Download Free Administrative Healthcare Data Book in PDF and EPUB Free Download. You can read online Administrative Healthcare Data and write the review.

Explains the source and content of administrative healthcare data, which is the product of financial reimbursement for healthcare services. The book integrates the business knowledge of healthcare data with practical and pertinent case studies as shown in SAS Enterprise Guide.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
This Handbook intends to inform Data Providers and researchers on how to provide privacy-protected access to, handle, and analyze administrative data, and to link them with existing resources, such as a database of data use agreements (DUA) and templates. Available publicly, the Handbook will provide guidance on data access requirements and procedures, data privacy, data security, property rights, regulations for public data use, data architecture, data use and storage, cost structure and recovery, ethics and privacy-protection, making data accessible for research, and dissemination for restricted access use. The knowledge base will serve as a resource for all researchers looking to work with administrative data and for Data Providers looking to make such data available.
SAS Programming with Medicare Administrative Data is the most comprehensive resource available for using Medicare data with SAS. This book teaches you how to access Medicare data and, more importantly, how to apply this data to your research. Knowing how to use Medicare data to answer common research and business questions is a critical skill for many SAS users. Due to its complexity, Medicare data requires specific programming knowledge in order to be applied accurately. Programmers need to understand the Medicare program in order to interpret and utilize its data. With this book, you'll learn the entire process of programming with Medicare data—from obtaining access to data; to measuring cost, utilization, and quality; to overcoming common challenges. Each chapter includes exercises that challenge you to apply concepts to real-world programming tasks. SAS Programming with Medicare Administrative Data offers beginners a programming project template to follow from beginning to end. It also includes more complex questions and discussions that are appropriate for advanced users. Matthew Gillingham has created a book that is both a foundation for programmers new to Medicare data and a comprehensive reference for experienced programmers. This book is part of the SAS Press program.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
The goal of eliminating disparities in health care in the United States remains elusive. Even as quality improves on specific measures, disparities often persist. Addressing these disparities must begin with the fundamental step of bringing the nature of the disparities and the groups at risk for those disparities to light by collecting health care quality information stratified by race, ethnicity and language data. Then attention can be focused on where interventions might be best applied, and on planning and evaluating those efforts to inform the development of policy and the application of resources. A lack of standardization of categories for race, ethnicity, and language data has been suggested as one obstacle to achieving more widespread collection and utilization of these data. Race, Ethnicity, and Language Data identifies current models for collecting and coding race, ethnicity, and language data; reviews challenges involved in obtaining these data, and makes recommendations for a nationally standardized approach for use in health care quality improvement.
This book offers a practical introduction to healthcare analytics that does not require a background in data science or statistics. It presents the basics of data, analytics and tools and includes multiple examples of their applications in the field. The book also identifies practical challenges that fuel the need for analytics in healthcare as well as the solutions to address these problems. In the healthcare field, professionals have access to vast amount of data in the form of staff records, electronic patient record, clinical findings, diagnosis, prescription drug, medical imaging procedure, mobile health, resources available, etc. Managing the data and analyzing it to properly understand it and use it to make well-informed decisions can be a challenge for managers and health care professionals. A new generation of applications, sometimes referred to as end-user analytics or self-serve analytics, are specifically designed for non-technical users such as managers and business professionals. The ability to use these increasingly accessible tools with the abundant data requires a basic understanding of the core concepts of data, analytics, and interpretation of outcomes. This book is a resource for such individuals to demystify and learn the basics of data management and analytics for healthcare, while also looking towards future directions in the field.
Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
The Bureau, precursor to Statistics Canada, was founded in 1918 as a centralized national agency to replace piecemeal arrangements which had developed over time and no longer satisfied statistical needs. The author (who is a retired assistant chief statistician of Canada) traces its evolution and looks at the individuals who influenced it. He discusses how Canada's statistical system has coped with the country's evolution from a staple economy to a mature industrial power; the changing nature of the technology for gathering, compiling, analyzing, and disseminating information; and some notable Canadian contributions to the science and production of statistics. Annotation copyrighted by Book News, Inc., Portland, OR
This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.