Download Free Adhesion Of Dust And Powder Book in PDF and EPUB Free Download. You can read online Adhesion Of Dust And Powder and write the review.

No detailed description available for "Fundamentals of Adhesion and Interfaces".
This monograph describes the physical principles of adhesion between particles and surfaces. These principles are applied to pharmaceutical processes involved in the manufacture of solid dosage forms such as powders, granules, tablets and dry powder inhalations. To help in the understanding of these systems, physical properties of solid surfaces, and an introduction to the theory of friction is given. Techniques for measuring particle adhesion and fracture mechanical properties of powders are introduced, as far as these are relevant to the processes discussed. The philosophy of the book deviates from that of standard pharmaceutical textbooks, in that it focuses primarily on physical principles involved in the manufacture of dosage forms rather than describing these processes purely by observation.
The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal. The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments. Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal. 2. Mechanisms of particle adhesion and removal. 3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand particle-particle and particle-substrate interactions. 4. Mechanics of adhesion of micro- and nanoscale particles. 5. Various factors affecting particle adhesion to a variety of substrates. 6. Surface modification techniques to modulate particle adhesion. 7. Various cleaning methods (both wet & dry) for particle removal. 8. Relevance of particle adhesion in a host of technologies ranging from simple to ultra-sophisticated.
Whenever a curved surface interacts with another surface, the principles of adhesion are at work. From the cells in your body to the dust on your glasses, intermolecular forces cause materials to attract one another. Elastic deformations resulting from these adhesive interactions store strain that can be liberated during particle detachment. Time dependent changes in adhesion can result from plastic deformation that both increases the real effective contact area and reduces the stored energy available to assist in particle removal. Processes such as these, based on the fundamentals tenets of particle adhesion, are now finding applications across many disciplines leading to a rich and rapid development of knowledge. This book documents the use of particle adhesion concepts in a variety of disciplines. Fields as varied as the cleaning of semiconductors, to the controlling of cancer metastasis, to the abatement of environmental pollution all benefit from applications of particle adhesion concepts.