Download Free Addison Wesley Science Insights Book in PDF and EPUB Free Download. You can read online Addison Wesley Science Insights and write the review.

Use Product Analytics to Understand Consumer Behavior and Change It at Scale Product Analytics is a complete, hands-on guide to generating actionable business insights from customer data. Experienced data scientist and enterprise manager Joanne Rodrigues introduces practical statistical techniques for determining why things happen and how to change what people do at scale. She complements these with powerful social science techniques for creating better theories, designing better metrics, and driving more rapid and sustained behavior change. Writing for entrepreneurs, product managers/marketers, and other business practitioners, Rodrigues teaches through intuitive examples from both web and offline environments. Avoiding math-heavy explanations, she guides you step by step through choosing the right techniques and algorithms for each application, running analyses in R, and getting answers you can trust. Develop core metrics and effective KPIs for user analytics in any web product Truly understand statistical inference, and the differences between correlation and causation Conduct more effective A/B tests Build intuitive predictive models to capture user behavior in products Use modern, quasi-experimental designs and statistical matching to tease out causal effects from observational data Improve response through uplift modeling and other sophisticated targeting methods Project business costs/subgroup population changes via advanced demographic projection Whatever your product or service, this guide can help you create precision-targeted marketing campaigns, improve consumer satisfaction and engagement, and grow revenue and profits. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
A guide to using and understanding the 'R' computer programming language.
Foundational Hands-On Skills for Succeeding with Real Data Science Projects This pragmatic book introduces both machine learning and data science, bridging gaps between data scientist and engineer, and helping you bring these techniques into production. It helps ensure that your efforts actually solve your problem, and offers unique coverage of real-world optimization in production settings. –From the Foreword by Paul Dix, series editor Machine Learning in Production is a crash course in data science and machine learning for people who need to solve real-world problems in production environments. Written for technically competent “accidental data scientists” with more curiosity and ambition than formal training, this complete and rigorous introduction stresses practice, not theory. Building on agile principles, Andrew and Adam Kelleher show how to quickly deliver significant value in production, resisting overhyped tools and unnecessary complexity. Drawing on their extensive experience, they help you ask useful questions and then execute production projects from start to finish. The authors show just how much information you can glean with straightforward queries, aggregations, and visualizations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimization in production environments. Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work. Leverage agile principles to maximize development efficiency in production projects Learn from practical Python code examples and visualizations that bring essential algorithmic concepts to life Start with simple heuristics and improve them as your data pipeline matures Avoid bad conclusions by implementing foundational error analysis techniques Communicate your results with basic data visualization techniques Master basic machine learning techniques, starting with linear regression and random forests Perform classification and clustering on both vector and graph data Learn the basics of graphical models and Bayesian inference Understand correlation and causation in machine learning models Explore overfitting, model capacity, and other advanced machine learning techniques Make informed architectural decisions about storage, data transfer, computation, and communication Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Programming Skills for Data Science brings together all the foundation skills needed to transform raw data into actionable insights for domains ranging from urban planning to precision medicine, even if you have no programming or data science experience. Guided by expert instructors Michael Freeman and Joel Ross, this book will help learners install the tools required to solve professional-level data science problems, including widely used R language, RStudio integrated development environment, and Git version-control system. It explains how to wrangle data into a form where it can be easily used, analyzed, and visualized so others can see the patterns uncovered. Step by step, students will master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone, Second Edition, is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. After all this you’ll make your code reproducible with LaTeX, RMarkdown, and Shiny. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. Coverage includes Explore R, RStudio, and R packages Use R for math: variable types, vectors, calling functions, and more Exploit data structures, including data.frames, matrices, and lists Read many different types of data Create attractive, intuitive statistical graphics Write user-defined functions Control program flow with if, ifelse, and complex checks Improve program efficiency with group manipulations Combine and reshape multiple datasets Manipulate strings using R’s facilities and regular expressions Create normal, binomial, and Poisson probability distributions Build linear, generalized linear, and nonlinear models Program basic statistics: mean, standard deviation, and t-tests Train machine learning models Assess the quality of models and variable selection Prevent overfitting and perform variable selection, using the Elastic Net and Bayesian methods Analyze univariate and multivariate time series data Group data via K-means and hierarchical clustering Prepare reports, slideshows, and web pages with knitr Display interactive data with RMarkdown and htmlwidgets Implement dashboards with Shiny Build reusable R packages with devtools and Rcpp Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.