Download Free Adaptive Technique For Underwater Acoustic Communication Book in PDF and EPUB Free Download. You can read online Adaptive Technique For Underwater Acoustic Communication and write the review.

Digital Underwater Acoustic Communications focuses on describing the differences between underwater acoustic communication channels and radio channels, discusses loss of transmitted sound in underwater acoustic channels, describes digital underwater acoustic communication signal processing, and provides a comprehensive reference to digital underwater acoustic communication equipment. This book is designed to serve as a reference for postgraduate students and practicing engineers involved in the design and analysis of underwater acoustic communications systems as well as for engineers involved in underwater acoustic engineering. - Introduces the basics of underwater acoustics, along with the advanced functionalities needed to achieve reliable communications in underwater environment - Identifies challenges in underwater acoustic channels relative to radio channels, underwater acoustic propagation, and solutions - Shows how multi-path structures can be thought of as time diversity signals - Presents a new, robust signal processing system, and an advanced FH-SS system for multimedia underwater acoustic communications with moderate communication ranges (above 20km) and rates (above 600bps) - Describes the APNFM system for underwater acoustic communication equipment (including both civil and military applications), to be employed in active sonar to improve its performance
The NATO Advanced Study Institute on Adaptive Methods in Underwater Acoustics was held on 30 July - 10 August 1984 in LLineburg, Germany. The Institute was primarily concerned with signal processing for underwater appl ica tions. The majority of the presentations, when taken together, yield a definite picture of the present status of understanding of adaptive and high resolution processing, setting out the progress achieved over the past four years together with the major problem areas remaining. Major effort was made to obtain a commensurate contribution of tutorial and advanced research papers. It is my hope that the material in this volume may be equally well suited for students getting an introduction to some of the basic problems in underwater signal processing and for the professionals who may obtain an up-to-date overview of the present state of the art. This might be especially useful in view of the controversy and lack of adequate interrelationships which have marked this rapidly expanding field in the past. Practical reinforcement of this picture is provided by the material concerning digital and optical processing technology, giving some guidance to achievable adaptive and high resolution techniques with current processing devices. The formal programme was extended and detailed by a series of six evening work shops on specific topics, during which informal discussions took place among the participants. Summaries of these workshops are also included in these Proceedings.
Underwater acoustic digital signal processing and communications is an area of applied research that has witnessed major advances over the past decade. Rapid developments in this area were made possible by the use of powerful digital signal processors (DSPs) whose speed, computational power and portability allowed efficient implementation of complex signal processing algorithms and experimental demonstration of their performance in a variety of underwater environments. The early results served as a motivation for the development of new and improved signal processing methods for underwater applications, which today range from classical of autonomous underwater vehicles and sonar signal processing, to remote control underwater wireless communications. This book presents the diverse areas of underwater acoustic signal processing and communication systems through a collection of contributions from prominent researchers in these areas. Their results, both new and those published over the past few years, have been assembled to provide what we hope is a comprehensive overview of the recent developments in the field. The book is intended for a general audience of researchers, engineers and students working in the areas of underwater acoustic signal processing. It requires the reader to have a basic understanding of the digital signal processing concepts. Each topic is treated from a theoretical perspective, followed by practical implementation details. We hope that the book can serve both as a study text and an academic reference.
A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver design in systems with single or multiple transmitters. This is the main body of the book. Extensive experimental data sets are used to verify the receiver performance. In the third part, the authors discuss applications of the OFDM receiver in i) deep water channels, which may contain very long separated multipath clusters, ii) interference-rich environments, where an unintentional interference such as Sonar will be present, and iii) a network with multiple users where both non-cooperative and cooperative underwater communications are developed. Lastly, it describes the development of a positioning system with OFDM waveforms, and the progress on the OFDM modem development. Closely related industries include the development and manufacturing of autonomous underwater vehicles (AUVs) and scientific sensory equipment. AUVs and sensors in the future could integrate modems, based on the OFDM technology described in this book. Contents includes: Underwater acoustic channel characteristics/OFDM basics/Peak-to-average-ratio control/Detection and Doppler estimation (Doppler scale and CFO)/Channel estimation and noise estimation/A block-by-block progressive receiver and performance results/Extensions to multi-input multi-output OFDM/Receiver designs for multiple users/Cooperative underwater OFDM (Physical layer network coding and dynamic coded cooperation)/Localization with OFDM waveforms/Modem developments A valuable resource for Graduate and postgraduate students on electrical engineering or physics courses; electrical engineers, underwater acousticians, communications engineers
This book summarizes the latest research on cognitive network-layer methods and smart adaptive physical-layer methods in underwater networks. Underwater communication requires extendable and delay-tolerant underwater acoustic networks capable of supporting multiple frequency bands, data rates and transmission ranges. The book also discusses a suitable foreground communication stack for mixed mobile/static networks, a technology that requires adaptive physical layer waveforms and cognitive network strategies with underlying cooperative and non-cooperative robust processes. The goal is to arrive at a universally applicable standard in the area of Underwater Internet-of-Things [ISO/IEC 30140, 30142, 30143]. The book is the second spin-off of the research project RACUN, after the first RACUN-book "Underwater Acoustic Networking Techniques" (https://link.springer.com/book/10.1007%2F978-3-642-25224-2)
"An excellent book for those who are interested in learning the current status of research and development . . . [and] who want to get a comprehensive overview of the current state-of-the-art." —E-Streams This book provides up-to-date information on research and development in the rapidly growing area of networks based on the multihop ad hoc networking paradigm. It reviews all classes of networks that have successfully adopted this paradigm, pointing out how they penetrated the mass market and sparked breakthrough research. Covering both physical issues and applications, Mobile Ad Hoc Networking: Cutting Edge Directions offers useful tools for professionals and researchers in diverse areas wishing to learn about the latest trends in sensor, actuator, and robot networking, mesh networks, delay tolerant and opportunistic networking, and vehicular networks. Chapter coverage includes: Multihop ad hoc networking Enabling technologies and standards for mobile multihop wireless networking Resource optimization in multiradio multichannel wireless mesh networks QoS in mesh networks Routing and data dissemination in opportunistic networks Task farming in crowd computing Mobility models, topology, and simulations in VANET MAC protocols for VANET Wireless sensor networks with energy harvesting nodes Robot-assisted wireless sensor networks: recent applications and future challenges Advances in underwater acoustic networking Security in wireless ad hoc networks Mobile Ad Hoc Networking will appeal to researchers, developers, and students interested in computer science, electrical engineering, and telecommunications.
A detailed review of underwater channel characteristics, Underwater Acoustic Sensor Networks investigates the fundamental aspects of underwater communication. Prominent researchers from around the world consider contemporary challenges in the development of underwater acoustic sensor networks (UW-ASNs) and introduce a cross-layer approach for effec
The field of acoustic engineering has many various potential applications, such as in ocean science research and homeland security. This book provides cutting-edge knowledge in current techniques and technologies, such as the adaptive technique for underwater communication, array processing and the CI/OFDM system. One chapter takes inspiration from the natural world in proposing a new bio-inspired ranging approach for resolution purposes. Technologies such as high-resolution array processing methods can also be used to locate underwater objects in sediment, as one chapter shows. Finally, two contributions cover the applications of narrowband interference suppression and iterative equalization, and decoding schemes. Given the scope of the book, it will be required reading for researchers and engineers in the field.
To promote awareness, understanding, advancement and application of ocean engineering and marine technology This includes all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources
This literature study presents an overview of underwater acoustic networking. It provides a background and describes the state of the art of all networking facets that are relevant for underwater applications. This report serves both as an introduction to the subject and as a summary of existing protocols, providing support and inspiration for the development of network architectures.