Download Free Adaptive Models And Heavy Tails Book in PDF and EPUB Free Download. You can read online Adaptive Models And Heavy Tails and write the review.

The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
ADVANCES IN HEAVY TAILED RISK MODELING A cutting-edge guide for the theories, applications, and statistical methodologies essential to heavy tailed risk modeling Focusing on the quantitative aspects of heavy tailed loss processes in operational risk and relevant insurance analytics, Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk presents comprehensive coverage of the latest research on the theories and applications in risk measurement and modeling techniques. Featuring a unique balance of mathematical and statistical perspectives, the handbook begins by introducing the motivation for heavy tailed risk processes. A companion with Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk, the handbook provides a complete framework for all aspects of operational risk management and includes: Clear coverage on advanced topics such as splice loss models, extreme value theory, heavy tailed closed form loss distribution approach models, flexible heavy tailed risk models, risk measures, and higher order asymptotic approximations of risk measures for capital estimation An exploration of the characterization and estimation of risk and insurance modeling, which includes sub-exponential models, alpha-stable models, and tempered alpha stable models An extended discussion of the core concepts of risk measurement and capital estimation as well as the details on numerical approaches to evaluation of heavy tailed loss process model capital estimates Numerous detailed examples of real-world methods and practices of operational risk modeling used by both financial and non-financial institutions Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk is an excellent reference for risk management practitioners, quantitative analysts, financial engineers, and risk managers. The handbook is also useful for graduate-level courses on heavy tailed processes, advanced risk management, and actuarial science.
'Overall, the book is highly technical, including full mathematical proofs of the results stated. Potential readers are post-graduate students or researchers in Quantitative Risk Management willing to have a manual with the state-of-the-art on portfolio diversification and risk aggregation with heavy tails, including the fundamental theorems as well as collateral (but most useful) results on majorization and copula theory.'Quantitative Finance This book offers a unified approach to the study of crises, large fluctuations, dependence and contagion effects in economics and finance. It covers important topics in statistical modeling and estimation, which combine the notions of copulas and heavy tails — two particularly valuable tools of today's research in economics, finance, econometrics and other fields — in order to provide a new way of thinking about such vital problems as diversification of risk and propagation of crises through financial markets due to contagion phenomena, among others. The aim is to arm today's economists with a toolbox suited for analyzing multivariate data with many outliers and with arbitrary dependence patterns. The methods and topics discussed and used in the book include, in particular, majorization theory, heavy-tailed distributions and copula functions — all applied to study robustness of economic, financial and statistical models, and estimation methods to heavy tails and dependence.
Extreme Value Modeling and Risk Analysis: Methods and Applications presents a broad overview of statistical modeling of extreme events along with the most recent methodologies and various applications. The book brings together background material and advanced topics, eliminating the need to sort through the massive amount of literature on the subje
Twenty-four contributions, intended for a wide audience from various disciplines, cover a variety of applications of heavy-tailed modeling involving telecommunications, the Web, insurance, and finance. Along with discussion of specific applications are several papers devoted to time series analysis, regression, classical signal/noise detection problems, and the general structure of stable processes, viewed from a modeling standpoint. Emphasis is placed on developments in handling the numerical problems associated with stable distribution (a main technical difficulty until recently). No index. Annotation copyrighted by Book News, Inc., Portland, OR
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.
The book features many figures and tables illustrating longitudinal data and numerous homework problems. The associated web site contains many longitudinal data sets, examples of computer code, and labs to re-enforce the material. Weiss emphasizes continuous data rather than discrete data, graphical and covariance methods, and generalizations of regression rather than generalizations of analysis of variance.
Heavy-tailed distributions are typical for phenomena in complex multi-component systems such as biometry, economics, ecological systems, sociology, web access statistics, internet traffic, biblio-metrics, finance and business. The analysis of such distributions requires special methods of estimation due to their specific features. These are not only the slow decay to zero of the tail, but also the violation of Cramer’s condition, possible non-existence of some moments, and sparse observations in the tail of the distribution. The book focuses on the methods of statistical analysis of heavy-tailed independent identically distributed random variables by empirical samples of moderate sizes. It provides a detailed survey of classical results and recent developments in the theory of nonparametric estimation of the probability density function, the tail index, the hazard rate and the renewal function. Both asymptotical results, for example convergence rates of the estimates, and results for the samples of moderate sizes supported by Monte-Carlo investigation, are considered. The text is illustrated by the application of the considered methodologies to real data of web traffic measurements.
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.