Download Free Adaptive Estimation Of Non Linear Regression Models Book in PDF and EPUB Free Download. You can read online Adaptive Estimation Of Non Linear Regression Models and write the review.

Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
This book deals with estimation in situations in which there is believed to be enough information to model parametrically some, but not all of the features of a data set. Such models have arisen in a wide context in recent years, and involve new nonlinear estimation procedures. Statistical models of this type are directly applicable to fields such as economics, epidemiology, and astronomy.
This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
This book deals with monitoring and control of biotechnological processes. Different methods are proposed which are based on the nonlinear structure of the process and do not require any a priori knowledge of the fermentation parameters. The theoretical stability and convergence properties of the proposed algorithms are analysed and their performances are illustrated by simulation results and, in many instances, by real life experiments. The concept of software sensors is introduced; these are algorithms based on the nonlinear model of the process and designed for on-line estimation of the biological variables and/or the fermentation parameters. In order to deal with process nonstationarities and parameter uncertainties, reference is made to adaptive estimation and control techniques.The book is the result of an intensive joint research effort by the authors during the last decade. It is intended as a graduate level text for students of bioengineering as well as a reference text for scientists and engineers involved in the design and optimization of bioprocesses.
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
This festschrift is dedicated to Professor Howell Tong on the occasion of his 65th birthday. With a Foreword written by Professor Peter Whittle, FRS, it celebrates Tong's path-breaking and tireless contributions to nonlinear time series analysis, chaos and statistics, by reprinting 10 selected papers by him and his collaborators, which are interleaved with 17 original reviews, written by 19 international experts. Through these papers and reviews, readers will have an opportunity to share many of the excitements, retrospectively and prospectively, of the relatively new subject of nonlinear time series. Tong has played a leading role in laying the foundation of the subject; his innovative and authoritative contributions are reflected in the review articles in the volume, which describe modern and related developments in the subject, including applications in many major fields such as ecology, economics, finance and others. This volume will be useful to researchers and students interested in the theory and practice of nonlinear time series analysis. Sample Chapter(s). Foreword (68 KB). Chapter 1: Birth of the Threshold Time Series Model (269 KB). Contents: Reflections on Threshold Autoregression (P J Brockwell); The Threshold Approach in Volatility Modelling (W K Li); Dependence and Nonlinearity (M Rosenblatt); Recent Developments on Semiparametric Regression Model Selection (J Gao); Thoughts on the Connections Between Threshold Time Series Models and Dynamical Systems (D B H Cline); Crossing the Bridge Backwards: Some Comments on Early Interdisciplinary Efforts (C D Cutler); On Likelihood Ratio Tests for Threshold Autoregression (K-S Chan & H Tong); An Adaptive Estimation Method for Semiparametric Models and Dimension Reduction (C Leng et al.); On Howell Tong's Contributions to Reliability (M M Ali); and other papers. Readership: Graduate students and researchers in statistics and related fields of ecology, economics and finance.
This collection investigates parametric, semiparametric, nonparametric, and nonlinear estimation techniques in statistical modeling.
While there have been a large number of estimation methods proposed and developed for linear regression, none has proved good for all purposes. This text focuses on the construction of an adaptive combination of two estimation methods so as to help users make an objective choice and combine the desirable properties of two estimators.