Download Free Adaptive Discrete Event Simulation For Analysis Of Harpy Swarm Attack Book in PDF and EPUB Free Download. You can read online Adaptive Discrete Event Simulation For Analysis Of Harpy Swarm Attack and write the review.

Harpy swarm attacks are a new type of threat designed for Suppression of Enemy Air Defenses. Research into combating Harpy swarm attacks has been conducted but the simulation software used to date, Naval Simulation System, is inadequate for future research. A new and mission-focused simulation tool is necessary in order to advance research in defensive tactics against Harpy and other unmanned aerial vehicle threats (UAV). This research develops a simulation model for a Harpy swarm attack using Simkit to meet the need for a mission specific analytical tool. The base model consists of a user-defined Harpy patrol area and a ship traversing the area on a course and speed also defined by the user. A total of 16 parameters are defined and implemented. The model records the time any Harpy impacts the ship to provide data for the response variable, the number of Harpy hits on the ship. Main effect and full factorial regressions were performed as well as a partition tree to determine which parameters had the most significance on the number of Harpies which hit the ship. These model characteristics and future enhancements will provide researchers the ability to assess alternative anti-UAV swarm tactics.
Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles
"This book provides a comprehensive overview of theory and practice in simulation systems focusing on major breakthroughs within the technological arena, with particular concentration on the accelerating principles, concepts and applications"--Provided by publisher.
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
Offers comprehensive coverage of discrete-event simulation, emphasizing and describing the procedures used in operations research - methodology, generation and testing of random numbers, collection and analysis of input data, verification of simulation models and analysis of output data.
This book offers a comprehensive analysis of the theory and tools needed for the development of an efficient and robust infrastructure for the design of collaborative patrolling unmanned aerial vehicle (UAV) swarms, focusing on its applications for tactical intelligence drones. It discusses frameworks for robustly and near-optimally analyzing flocks of semi-autonomous vehicles designed to efficiently perform the ongoing dynamic patrolling and scanning of pre-defined “search regions”. It discusses the theoretical limitations of such systems, as well as the trade-offs between the systems’ various economic and operational parameters. Current UAV systems rely mainly on human operators for the design and adaptation of drones’ flying routes. However, recent technological advances have introduced new systems, comprised of a small number of self-organizing vehicles, manually guided at the swarm level by a human operator. With the growing complexity of such man-supervised architectures, it is becoming increasingly harder to guarantee a pre-defined level of performance. The use of large scale swarms of UAVs as a combat and reconnaissance platform therefore necessitates the development of an efficient optimization mechanism of their utilization, specifically in the design and maintenance of their patrolling routes. The book is intended for researchers and engineers in the fields of swarms systems and autonomous drones.