Download Free Adaptive Digital Filters And Signal Analysis Book in PDF and EPUB Free Download. You can read online Adaptive Digital Filters And Signal Analysis and write the review.

This text emphasizes the intricate relationship between adaptive filtering and signal analysis - highlighting stochastic processes, signal representations and properties, analytical tools, and implementation methods. This second edition includes new chapters on adaptive techniques in communications and rotation-based algorithms. It provides practical applications in information, estimation, and circuit theories.
This text emphasizes the intricate relationship between adaptive filtering and signal analysis - highlighting stochastic processes, signal representations and properties, analytical tools, and implementation methods.
Adaptive filtering is commonly used in many communication applications including speech and video predictive coding, mobile radio, ISDN subscriber loops, and multimedia systems. Existing adaptive filtering topologies are non-concurrent and cannot be pipelined. Pipelined Adaptive Digital Filters presents new pipelined topologies which are useful in reducing area and power and in increasing speed. If the adaptive filter portion of a system suffers from a power-speed-area bottleneck, a solution is provided. Pipelined Adaptive Digital Filters is required reading for all users of adaptive digital filtering algorithms. Algorithm, application and integrated circuit chip designers can learn how their algorithms can be tailored and implemented with lower area and power consumption and with higher speed. The relaxed look-ahead techniques are used to design families of new topologies for many adaptive filtering applications including least mean square and lattice adaptive filters, adaptive differential pulse code modulation coders, adaptive differential vector quantizers, adaptive decision feedback equalizers and adaptive Kalman filters. Those who use adaptive filtering in communications, signal and image processing algorithms can learn the basis of relaxed look-ahead pipelining and can use their own relaxations to design pipelined topologies suitable for their applications. Pipelined Adaptive Digital Filters is especially useful to designers of communications, speech, and video applications who deal with adaptive filtering, those involved with design of modems, wireless systems, subscriber loops, beam formers, and system identification applications. This book can also be used as a text for advanced courses on the topic.
“Adaptive Digital Filters” presents an important discipline applied to the domain of speech processing. The book first makes the reader acquainted with the basic terms of filtering and adaptive filtering, before introducing the field of advanced modern algorithms, some of which are contributed by the authors themselves. Working in the field of adaptive signal processing requires the use of complex mathematical tools. The book offers a detailed presentation of the mathematical models that is clear and consistent, an approach that allows everyone with a college level of mathematics knowledge to successfully follow the mathematical derivations and descriptions of algorithms. The algorithms are presented in flow charts, which facilitates their practical implementation. The book presents many experimental results and treats the aspects of practical application of adaptive filtering in real systems, making it a valuable resource for both undergraduate and graduate students, and for all others interested in mastering this important field.
Rather than superficially examining an extensive list of possible applications benefiting from adaptive filter use, the authors examine four such problems in detail and review the common attributes that are shared with many other applications of adaptive filtering.The authors develop the basic rules and algorithms for filter performance and provide tools for design, along with an appreciation of the complexity of behavioral analysis. Derivations and convergence discussions are kept to a basic level. The presentation focuses on a few principles and applies them to a series of motivating examples, that include in-depth discussion of implementation aspects for filter design not found in other books.Serves as a valuable reference for practicing engineers.
Adaptive Filtering: Algorithms and Practical Implementation, Second Edition, presents a concise overview of adaptive filtering, covering as many algorithms as possible in a unified form that avoids repetition and simplifies notation. It is suitable as a textbook for senior undergraduate or first-year graduate courses in adaptive signal processing and adaptive filters. The philosophy of the presentation is to expose the material with a solid theoretical foundation, to concentrate on algorithms that really work in a finite-precision implementation, and to provide easy access to working algorithms. Hence, practicing engineers and scientists will also find the book to be an excellent reference. This second edition contains a substantial amount of new material: -Two new chapters on nonlinear and subband adaptive filtering; -Linearly constrained Weiner filters and LMS algorithms; -LMS algorithm behavior in fast adaptation; -Affine projection algorithms; -Derivation smoothing; -MATLAB codes for algorithms.
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.
Adaptive Filtering: Algorithms and Practical Implementation, Second Edition, presents a concise overview of adaptive filtering, covering as many algorithms as possible in a unified form that avoids repetition and simplifies notation. It is suitable as a textbook for senior undergraduate or first-year graduate courses in adaptive signal processing and adaptive filters. The philosophy of the presentation is to expose the material with a solid theoretical foundation, to concentrate on algorithms that really work in a finite-precision implementation, and to provide easy access to working algorithms. Hence, practicing engineers and scientists will also find the book to be an excellent reference. This second edition contains a substantial amount of new material: -Two new chapters on nonlinear and subband adaptive filtering; -Linearly constrained Weiner filters and LMS algorithms; -LMS algorithm behavior in fast adaptation; -Affine projection algorithms; -Derivation smoothing; -MATLAB codes for algorithms. An instructor's manual, a set of master transparencies, and the MATLAB codes for all of the algorithms described in the text are also available. Useful to both professional researchers and students, the text includes 185 problems; over 38 examples, and over 130 illustrations. It is of primary interest to those working in signal processing, communications, and circuits and systems. It will also be of interest to those working in power systems, networks, learning systems, and intelligent systems.
Adaptive filters play an important role in the fields related to digital signal processing and communication, such as system identification, noise cancellation, channel equalization, and beamforming. In practical applications, the computational complexity of an adaptive filter is an important consideration. The Least Mean Square (LMS) algorithm is widely used because of its low computational complexity ($O(N)$) and simplicity in implementation. The least squares algorithms, such as Recursive Least Squares (RLS), Conjugate Gradient (CG), and Euclidean Direction Search (EDS), can converge faster and have lower steady-state mean square error (MSE) than LMS. However, their high computational complexity ($O(N^2)$) makes them unsuitable for many real-time applications. A well-known approach to controlling computational complexity is applying partial update (PU) method to adaptive filters. A partial update method can reduce the adaptive algorithm complexity by updating part of the weight vector instead of the entire vector or by updating part of the time. In the literature, there are only a few analyses of these partial update adaptive filter algorithms. Most analyses are based on partial update LMS and its variants. Only a few papers have addressed partial update RLS and Affine Projection (AP). Therefore, analyses for PU least-squares adaptive filter algorithms are necessary and meaningful. This monograph mostly focuses on the analyses of the partial update least-squares adaptive filter algorithms. Basic partial update methods are applied to adaptive filter algorithms including Least Squares CMA (LSCMA), EDS, and CG. The PU methods are also applied to CMA1-2 and NCMA to compare with the performance of the LSCMA. Mathematical derivation and performance analysis are provided including convergence condition, steady-state mean and mean-square performance for a time-invariant system. The steady-state mean and mean-square performance are also presented for a time-varying system. Computational complexity is calculated for each adaptive filter algorithm. Numerical examples are shown to compare the computational complexity of the PU adaptive filters with the full-update filters. Computer simulation examples, including system identification and channel equalization, are used to demonstrate the mathematical analysis and show the performance of PU adaptive filter algorithms. They also show the convergence performance of PU adaptive filters. The performance is compared between the original adaptive filter algorithms and different partial-update methods. The performance is also compared among similar PU least-squares adaptive filter algorithms, such as PU RLS, PU CG, and PU EDS. In addition to the generic applications of system identification and channel equalization, two special applications of using partial update adaptive filters are also presented. One application uses PU adaptive filters to detect Global System for Mobile Communication (GSM) signals in a local GSM system using the Open Base Transceiver Station (OpenBTS) and Asterisk Private Branch Exchange (PBX). The other application uses PU adaptive filters to do image compression in a system combining hyperspectral image compression and classification.