Download Free Adaptive Beaming And Imaging In The Turbulent Atmosphere Book in PDF and EPUB Free Download. You can read online Adaptive Beaming And Imaging In The Turbulent Atmosphere and write the review.

Due to the wide application of adaptive optical systems, an understanding of optical wave propagation in randomly inhomogeneous media has become essential, and several numerical models of individual AOS components and of efficient correction algorithms have been developed. This monograph contains detailed descriptions of the mathematical experiments that were designed and carried out during more than a decade's worth of research.
Exploring the practical aspects of atmospheric optical communication and light detection and ranging (LIDAR), Applied Aspects of Optical Communication and LIDAR details the role of atmospheric structures in propagation phenomena that influence the transmission of optical signals through perturbed atmospheric communication channels. It examines nume
Directed Energy Weapons is nothing new to mankind, historically the origination of such weapons falls in centuries ago when first time the famous Greek mathematician, physicist, engineer, inventor, and astronomer Archimedes of Syracuse used different mirrors to collect sunbeams and focusing them on Romans fleet in order to destroy enemy ships with fire. This is known as the Archimedes Heat Ray. Archimedes may have used mirrors acting collectively as a parabolic reflector to burn ships attacking Syracuse. The device was used to focus sunlight onto approaching ships, causing them to catch fire. Of course the myth or reality of Archimedes Heat Ray still is a questionable story, but certain experiments with the help of a group of students from Massachusetts Institute of Technology was carried out with 127 one-foot (30 cm) square mirror tiles in October of 2005 that was focused on a mock-up wooden ship at a range of around 100 feet (30 m). The flames broke out on a patch of the ship, but only after the sky had been cloudless and the ship had remained stationary for around ten minutes. It was concluded the device was a feasible weapon under these conditions.
This book offers a unique multidisciplinary integration of the physics of turbulence and remote sensing technology. Remote Sensing of Turbulence provides a new vision on the research of turbulence and summarizes the current and future challenges of monitoring turbulence remotely. The book emphasizes sophisticated geophysical applications, detection, and recognition of complex turbulent flows in oceans and the atmosphere. Through several techniques based on microwave and optical/IR observations, the text explores the technological capabilities and tools for the detection of turbulence, their signatures, and variability. FEATURES Covers the fundamental aspects of turbulence problems with a broad geophysical scope for a wide audience of readers Provides a complete description of remote-sensing capabilities for observing turbulence in the earth’s environment Establishes the state-of-the-art remote-sensing techniques and methods of data analysis for turbulence detection Investigates and evaluates turbulence detection signatures, their properties, and variability Provides cutting-edge remote-sensing applications for space-based monitoring and forecasts of turbulence in oceans and the atmosphere This book is a great resource for applied physicists, the professional remote sensing community, ecologists, geophysicists, and earth scientists.
This book delves deeply into the real-world technologies behind the ‘directed energy weapons’ that many believe exist only within the confines of science fiction. On the contrary, directed energy weapons such as high energy lasers are very real, and this book provides a crash course in all the physical and mathematical concepts that make these weapons a reality. Written to serve both scientists researching the physical phenomena of laser effects, as well as engineers focusing on practical applications, the author provides worked examples demonstrating issues such as how to solve for heat diffusion equation for different boundary and initial conditions. Several sections are devoted to reviewing and dealing with solutions of diffusion equations utilizing the aid of the integral transform techniques. Ultimately this book examines the state-of-the-art in currently available high energy laser technologies, and suggests future directions for accelerating practical applications in the field.“br>/div
The most recent developments on the propagation of microwave and optical beams in turbulent media, such as the clear atmosphere are discussed. Among the phenomena considered are beam spreading, beam wander, loss of coherence, scintillations, angle-of-arrival variations, and short pulse effects. Also included is a discussion of methods of compensation of the effect of turbulence on communications and imaging systems.
The new edition of this popular textbook keeps its structure, introducing the advanced topics of: (i) wireless communications, (ii) free-space optical (FSO) communications, (iii) indoor optical wireless (IR) communications, and (iv) fiber-optics communications, but thoroughly updates the content for new technologies and practical applications. The author presents fundamental concepts, such as propagation principles, modulation formats, channel coding, diversity principles, MIMO signal processing, multicarrier modulation, equalization, adaptive modulation and coding, detection principles, and software defined transmission, first describing them and then following up with a detailed look at each particular system. The book is self-contained and structured to provide straightforward guidance to readers looking to capture fundamentals and gain theoretical and practical knowledge about wireless communications, free-space optical communications, and fiber-optics communications, all which can be readily applied in studies, research, and practical applications. The textbook is intended for an upper undergraduate or graduate level courses in fiber-optics communication, wireless communication, and free-space optical communication problems, an appendix with all background material needed, and homework problems. In the second edition, in addition to the existing chapters being updated and problems being inserted, one new chapter has been added, related to the physical-layer security thus covering both security and reliability issues. New material on 5G and 6G technologies has been added in corresponding chapters.
With the discovery of planets beyond our solar system 25 years ago, exoplanet research has expanded dramatically, with new state-of-the-art ground-based and space-based missions dedicated to their discovery and characterisation. With more than 3,500 exoplanets now known, the complexity of the discovery techniques, observations and physical characterisation have grown exponentially. This Handbook ties all these avenues of research together across a broad range of exoplanet science. Planet formation, exoplanet interiors and atmospheres, and habitability are discussed, providing in-depth coverage of our knowledge to date. Comprehensively updated from the first edition, it includes instrumental and observational developments, in-depth treatment of the new Kepler mission results and hot Jupiter atmospheric studies, and major updates on models of exoplanet formation. With extensive references to the research literature and appendices covering all individual exoplanet discoveries, it is a valuable reference to this exciting field for both incoming and established researchers.