Download Free Adaptive Antennas And Receivers Book in PDF and EPUB Free Download. You can read online Adaptive Antennas And Receivers and write the review.

In our modern age of remote sensing, wireless communication, and the nearly endless list of other antenna-based applications, complex problems require increasingly sophisticated solutions. Conventional antenna systems are no longer suited to high-noise or low-signal applications such as intrusion detection. Detailing highly effective approaches to non-Gaussian weak signal detection, Adaptive Antennas and Receivers provides an authoritative introduction to state-of-the-art research on the modeling, testing, and application of these technologies. Edited by innovative researcher and eminent expert Melvin M. Weiner, this book is the first to integrate three advanced approaches to non-Gaussian weak signal detection into a single reference: homogeneous partitioning of the surveillance volume, adaptive antennas, and adaptive receivers. Comprising self-contained chapters contributed by renowned experts such as Donald D. Weiner and Ronald Fante, each chapter explores the techniques, theoretical basis, and applications of the approach under discussion. The book considers signal detection in the presence of external noise such as clutter residue, interference, atmospheric noise, jammers, external thermal noise, in vivo surrounding tissue, and camouflaging material, making it ideal for use across a broad spectrum of applications. This authoritative reference supplies more than 750 figures and tables, 1460 equations, and 640 references. Adaptive Antennas and Receivers is an ideal resource for improving performance in surveillance, communication, navigation, artificial intelligence, computer tomography, neuroscience, and intrusion detection systems, to name only a few.
Antennas and Propogation for Wireless Communication covers the basics of wireless communication system design with emphasis on antennas and propagation. It contains information on antenna fundamentals and the latest developments in smart antennas, as well as the radiation effects of hand-held devices. Antennas and Propogation for Wireless Communication provides a complete discussion of all the topics important to the design of wireless communication systems. Written by acknowledged authorities in their respective fields, the book deals with practical applications and presents real world examples. A solutions manual for college adopters accompanies the text. Ideal for engineers working in communication, antennas, and propagation for telecomm, military, and aerospace applications, as well as students of electrical engineering, this book covers all topics needed for a complete system design.
Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com
Describes the ideas and associated mathematical concepts behind signal to noise ratio and target detectability.
This compilation of the works and insights of various key scientists and engineers in this area addresses the current and future trends of scenarios for employing adaptive antenna arrays in communication systems. Ideal as a quick reference for engineers, researchers, advanced undergraduate and postgraduate students.
Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver's analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, starting from an analysis of requirements to the choice of architecture and finally to the design and algorithm development. The advantages and disadvantages of each wireless architecture and the suitability to a standard are given, enabling a better choice of design methodology, receiver lineup, analog block, and digital algorithm for a particular architecture. Whether you are a communications engineer working in system architecture and waveform design, an RF engineer working on noise and linearity budget and line-up analysis, a DSP engineer working on algorithm development, or an analog or digital design engineer designing circuits for wireless transceivers, this book is your one-stop reference and guide to designing low-cost low-power multi-mode multi-standard receivers. The material in this book is organized and presented to lead you from applied theory to practical design with plenty of examples and case studies drawn from modern wireless standards. - Provides a complete description of receiver architectures together with their pros and cons, enabling a better choice of design methodology - Covers the design trade-offs and algorithms between the analog front end and the digital modem – enabling an end-to-end design approach - Addresses multi-mode multi-standard low-cost, low-power radio design – critical for producing the applications for Smart phones and portable internet devices
Smart Antennas—State of the Art brings together the broad expertise of 41 European experts in smart antennas. They provide a comprehensive review and an extensive analysis of the recent progress and new results generated during the last years in almost all fields of smart antennas and MIMO (multiple-input multiple-output) transmission. The following represents a summarized table of content.Receiver: space-time processing, antenna combining, reduced rank processing, robust beamforming, subspace methods, synchronization, equalization, multiuser detection, iterative methods Channel: propagation, measurements and sounding, modelling, channel estimation, direction-of-arrival estimation, subscriber location estimation Transmitter: space-time block coding, channel side information, unified design of linear transceivers, ill-conditioned channels, MIMO-MAC strategies Network Theory: channel capacity, network capacity, multihop networks Technology: antenna design, transceivers, demonstrators and testbeds, future air interfaces Applications and Systems: 3G system and link level aspects, MIMO HSDPA, MIMO-WLAN/UMTS implementation issues This book serves as a reference for scientists and engineers who need to be aware of the leading edge research in multiple-antenna communications, an essential technology for emerging broadband wireless systems.
This compilation of the works and insights of various key scientists and engineers in this area addresses the current and future trends of scenarios for employing adaptive antenna arrays in communication systems. Ideal as a quick reference for engineers, researchers, advanced undergraduate and postgraduate students.
An updated guide to GNSS, and INS, and solutions to real-world GNSS/INS problems with Kalman filtering Written by recognized authorities in the field, this third edition of a landmark work provides engineers, computer scientists, and others with a working familiarity of the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems, and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS (tightly and loosely coupled), modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. The Third Edition includes: Updates on the upgrades in existing GNSS and other systems currently under development Expanded coverage of basic principles of antenna design and practical antenna design solutions Expanded coverage of basic principles of receiver design and an update of the foundations for code and carrier acquisition and tracking within a GNSS receiver Expanded coverage of inertial navigation, its history, its technology, and the mathematical models and methods used in its implementation Derivations of dynamic models for the propagation of inertial navigation errors, including the effects of drifting sensor compensation parameters Greatly expanded coverage of GNSS/INS integration, including derivation of a unified GNSS/INS integration model, its MATLAB® implementations, and performance evaluation under simulated dynamic conditions The companion website includes updated background material; additional MATLAB scripts for simulating GNSS-only and integrated GNSS/INS navigation; satellite position determination; calculation of ionosphere delays; and dilution of precision.