Download Free Adaptation To Life At High Salt Concentrations In Archaea Bacteria And Eukarya Book in PDF and EPUB Free Download. You can read online Adaptation To Life At High Salt Concentrations In Archaea Bacteria And Eukarya and write the review.

Salt is an essential requirement of life. Already from ancient times (e. g. , see the books of the Bible) its importance in human life has been known. For example, salt symbolizes destruction (as in Sodom and Gomorra), but on the other hand it has been an ingredient of every sacrifice during the Holy Temple periods. Microbial life in concentrated salt solutions has fascinated scientists since its discovery. Recently there have been several international meetings and books devoted entirely to halophiles. This book includes the proceedings of the “Halophiles 2004” conference held in Ljubljana, Slovenia, in September 2004 (www. u- lj. si/~bfbhaloph/index. html). This meeting was attended by 120 participants from 25 countries. The editors have selected presentations given at the meeting for this volume, and have also invited a number of contributions from experts who had not been present in Ljubljana. This book complements “Halophilic Microorganisms”, edited by A. Ventosa and published by Springer-Verlag (2004), “Halophilic Microorganism and their Environments” by A. Oren (2002), published by Kluwer Academic Publishers as volume 5 of “Cellular Origins, Life in Extreme Habitats and Astrobiology” (COLE), and “Microbiology and Biogeochemistry of Hypersaline Environments” edited by A. Oren, and published by CRC Press, Boca Raton (1999). Salt-loving (halophilic) microorganisms grow in salt solutions above seawater salinity (~3. 5% salt) up to saturation ranges (i. e. , around 35% salt). High concentrations of salt occur in natural environments (e. g.
Various groups of microorganisms - bacteria, archaea, algae and even fungi - have adapted to a life in a hypersaline environment. Halophilic Microorganisms explores the many-fold aspects of life under these extreme conditions. Several contributions analyze the microbial communities in different hypersaline environments such as salterns, soda lakes, and the Dead Sea or salt sediments. Reviews of their biodiversity, phylogeny, and genetics are given as well as of the diverse adaptation strategies of salt-tolerant or salt-requiring microorganisms. Microorganisms that have adapted to moderate salt concentrations or to habitats with drastic fluctuations are also treated in addition to the extreme halophiles. Their physiological, biochemical and molecular mechanisms developed in response to salinity and high osmotic pressure as well as current and future biotechnological applications are presented.
The world of halophiles is quite diverse and their representatives in three domains of life i.e. archaea, bacteria and eukarya. They are found all over the small subunit rRNA based tree of life and these micro-organisms are adapted to salt concentration up to saturation hence able to grow at >300g/l Nacl concentration. Their metabolic diversity is high as well encompassing oxygenic and anoxygenic phototrophs, aerobic heterotrophs, denitrifiers, sulphate reducers, fermenters and methanogens. The proteins of halophiles are magnificently engineered to function in a milieu containing 2-5M salt that encodes genes represent a valuable repository and resource for reconstruction and visualizing processes of habitat selection and adaptive evolution. Search for new enzymes endowed with novel activities and enhanced stability continues to be desirable purpose for important commercial production of biotechnological significance. These poly extremophiles proved excellent source of enzymes and metabolites possessing inherent ability to function in extreme conditions of high salt, alkaline pH and facilitating catalysis for industrial application in food processing, industrial bioconversion, bioremediation etc. In fact, it has just begun to realize the great potential and true extent of diversity and suitable applications if explored them judiciously. This book highlights current applications and research on halophiles to provide a timely overview. Chapters are written by expert authors from around the world and include topics of varied importance which include their role to play in enzyme production, restoration of soil fertility and plant growth , antimicrobial and biocatalytic potential, biomolecules in nanotechnology and aspects of quorum sensing. The book is divided into three sections, dealing with biodiversity, biotechnology and sustainable exploitation of halophiles. This major new work represents a valuable source of information to all those scientists interested in microorganisms in general and extremophiles in particular with respect to their innovative products and applications.
Bacteria have been the dominant forms of life on Earth for the past 3.5 billion years. They rapidly evolve, constantly changing their genetic architecture through horizontal DNA transfer and other mechanisms. Consequently, it can be difficult to define individual species and determine how they are related. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines how bacteria and other microbes evolve, focusing on insights from genomics-based studies. Contributors discuss the origins of new microbial populations, the evolutionary and ecological mechanisms that keep species separate once they have diverged, and the challenges of constructing phylogenetic trees that accurately reflect their relationships. They describe the organization of microbial genomes, the various mutations that occur, including the birth of new genes de novo and by duplication, and how natural selection acts on those changes. The role of horizontal gene transfer as a strong driver of microbial evolution is emphasized throughout. The authors also explore the geologic evidence for early microbial evolution and describe the use of microbial evolution experiments to examine phenomena like natural selection. This volume will thus be essential reading for all microbial ecologists, population geneticists, and evolutionary biologists.
The book compiles the latest studies on microorganisms thriving in extreme conditions. Microbes have been found in extremely high and low temperatures, highly acidic to saline conditions, from deserts to the Dead sea, from hot-springs to underwater hydrothermal vents- the diversity is incredible. The various chapters highlight the microbial life and describe the mechanisms of tolerance to these harsh conditions, and show how an understanding of these phenomena can help us exploit the microbes in biotechnology. The theme of the book is highly significant since life in these environments can give vital clues about the origin and evolution of life on earth, as a lot of these conditions simulate the environment present billions of years ago. Additionally, the study of adaptation and survival of organisms in such environments can be important for finding life on other planets. This book shall be useful for students, researchers and course instructors interested in evolution, microbial adaptations and ecology in varied environments.
"This water" he told me, "runs out to the eastern region, and flows into the Arabah; and when it comes into the sea, into the sea of foul waters [i. e. , the Dead Sea], the water will become wholesome. Every living creature that swarms will be able to live wherever this stream goes; the fish will be very abundant once these waters have reached there. It will be wholesome, and everything will live wherever this stream goes. Fishermen shall stand beside it all the way from En-gedi to En-eglaim; it shall be a place for drying nets; and the fish will be of various kinds [and] most plentiful, like the fish of the Great Sea. " Ezekiel’s prophecy (Ezekiel 47: 8-10) for revival and purification of the Dead Sea waters This new book on "Halophilic Microorganisms and their Environments" is the fifth volume in the COLE series (Cellular Origin and Life in Extreme Habitats (see: http://www. wkap. nl/prod/s/COLE). In the previous books we covered aspects of enigmatic microorganisms, microbial diversity, astrobiology, and symbiosis, so this book on halophilic microbes adds a fitting link to the rest of series' books. Since ancient times hypersaline habitats have been considered extreme environments, and some were thought not to sustain life at all. Yet, every organism requires salt for its existence. Salty places have been compared to an environment of extinction (e. g. , the Dead Sea).
Physiological and Biotechnological Aspects of Extremophiles highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms of these fascinating organisms use to survive.The vast majority of extremophiles are microbes which include archaea, bacteria and some eukaryotes. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they manage to survive and even thrive. Extremophiles have important practical uses. They are a valuable source of industrially important enzymes and recent research has revealed novel mechanisms and biomolecular structures with a broad range of potential applications in biotechnology, biomining, and bioremediation.Aimed at research scientists, students, microbiologists, and biotechnologists, this book is an essential reading for scientists working with extremophiles and a recommended reference text for anyone interested in the microbiology, bioprospecting, biomining, biofuels, and extremozymes of these organisms. - Shows the implications of the physiological adaptations of microbes from extreme habitats that are largely contributed by their biomolecules from basic to applied research - Provides in-depth knowledge of genomic plasticity and proteome of different extremophiles - Gives detailed and comprehensive insight about use of genetic engineering as well as genome editing for industrial applications
Over the last decades, scientists have been intrigued by the fascinating organisms that inhabit extreme environments. These organisms, known as extremophiles, thrive in habitats which for other terrestrial life-forms are intolerably hostile or even lethal. Based on such technological advances, the study of extremophiles has provided, over the last few years, ground-breaking discoveries that challenge the paradigms of modern biology. In the new bioeconomy, fungi in general, play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations. The book is organized in five parts: (I) Biodiversity, Ecology, Genetics and Physiology of Extremophilic Fungi, (II) Biosynthesis of Novel Biomolecules and Extremozymes (III) Bioenergy and Biofuel synthesis, and (IV) Wastewater and biosolids treatment, and (V) Bioremediation.
Extremophiles are known to thrive under harsh environmental conditions. Many extremophilic bio-products are already used as life-saving drugs. Recent technological advancements of systems biology have opened the door to explore these organisms anew as sources of products that might prove useful in clinical, environmental and drug development.