Download Free Active Subspaces Book in PDF and EPUB Free Download. You can read online Active Subspaces and write the review.

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.
Describes the principles and history behind the use of Krylov subspace methods in science and engineering. The outcome of the analysis is very practical and indicates what can and cannot be expected from the use of Krylov subspace methods, challenging some common assumptions and justifications of standard approaches.
Modern Electronic Structure Theory provides a didactically oriented description of the latest computational techniques in electronic structure theory and their impact in several areas of chemistry. The book is aimed at first year graduate students or college seniors considering graduate study in computational chemistry, or researchers who wish to acquire a wider knowledge of this field.
Modern Electronic Structure Theory provides a didactically oriented description of the latest computational techniques in electronic structure theory and their impact in several areas of chemistry. The book is aimed at first year graduate students or college seniors considering graduate study in computational chemistry, or researchers who wish to acquire a wider knowledge of this field.
The book comprises contributions by some of the most respected scientists in the field of mathematical modeling and numerical simulation of the human cardiocirculatory system. It covers a wide range of topics, from the assimilation of clinical data to the development of mathematical and computational models, including with parameters, as well as their efficient numerical solution, and both in-vivo and in-vitro validation. It also considers applications of relevant clinical interest. This book is intended for graduate students and researchers in the field of bioengineering, applied mathematics, computer, computational and data science, and medicine wishing to become involved in the highly fascinating task of modeling the cardiovascular system.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
In 1974, a scientific conference covering marine automation group and large vessels issues was organized under the patronage of the Technical Naval Studies Centre (CETENA) and the Italian National Research Council (CNR). A later collaboration with the Marine Technical Association (ATENA) led to the renaming of the conference as NAV, extending the topics covered to the technical field previously covered by ATENA national conferences. The NAV conference is now held every 3 years, and attracts specialists from all over the world. This book presents the proceedings of NAV 2018, held in Trieste, Italy, in June 2018. The book contains 70 scientific papers, 35 technical papers and 16 reviews, and subjects covered include: comfort on board; conceptual and practical ship design; deep sea mining and marine robotics; protection of the environment; renewable marine energy; design and engineering of offshore vessels; digitalization, unmanned vehicles and cyber security; yacht and pleasure craft design and inland waterway vessels. With its comprehensive coverage of scientific and technical maritime issues, the book will be of interest to all those involved in this important industry.
Membrane Proteins—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Membrane Transport Proteins. The editors have built Membrane Proteins—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Membrane Transport Proteins in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Membrane Proteins—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.