Download Free Active Pharmaceutical Ingredients In Synthesis Book in PDF and EPUB Free Download. You can read online Active Pharmaceutical Ingredients In Synthesis and write the review.

Presents the most effective catalytic reactions in use today, with a special focus on process intensification, sustainability, waste reduction, and innovative methods This book demonstrates the importance of efficient catalytic transformations for producing pharmaceutically active molecules. It presents the key catalytic reactions and the most efficient catalytic processes, including their significant advantages over compared previous methods. It also places a strong emphasis on asymmetric catalytic reactions, process intensification (PI), sustainability and waste mitigation, continuous manufacturing processes as enshrined by continuous flow catalysis, and supported catalysis. Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development offers chapters covering: Catalysis and Prerequisites for the Modern Pharmaceutial Industry Landscape; Catalytic Process Design - The Industrial Perspective; Hydrogenation, Hydroformylation and Other Reductions; Oxidation; ; Catalytic Addition Reactions; Catalytic Cross-Coupling Reactions; Catalytic Metathesis Reactions; Catalytic Cycloaddition Reactions: Coming Full-Circle; Catalytic Cyclopropanation Reactions; Catalytic C-H insertion Reactions; Phase Transfer Catalysis; and Biocatalysis. -Provides the reader with an updated clear view of the current state of the challenging field of catalysis for API production -Focuses on the application of catalytic methods for the synthesis of known APIs -Presents every key reaction, including Diels-Alder, CH Insertions, Metal-catalytic coupling-reactions, and many more -Includes recent patent literature for completeness Covering a topic of great interest for synthetic chemists and R&D researchers in the pharmaceutical industry, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development is a must-read for every synthetic chemist working with APIs.
Presents the most effective catalytic reactions in use today, with a special focus on process intensification, sustainability, waste reduction, and innovative methods This book demonstrates the importance of efficient catalytic transformations for producing pharmaceutically active molecules. It presents the key catalytic reactions and the most efficient catalytic processes, including their significant advantages over compared previous methods. It also places a strong emphasis on asymmetric catalytic reactions, process intensification (PI), sustainability and waste mitigation, continuous manufacturing processes as enshrined by continuous flow catalysis, and supported catalysis. Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development offers chapters covering: Catalysis and Prerequisites for the Modern Pharmaceutial Industry Landscape; Catalytic Process Design - The Industrial Perspective; Hydrogenation, Hydroformylation and Other Reductions; Oxidation; ; Catalytic Addition Reactions; Catalytic Cross-Coupling Reactions; Catalytic Metathesis Reactions; Catalytic Cycloaddition Reactions: Coming Full-Circle; Catalytic Cyclopropanation Reactions; Catalytic C-H insertion Reactions; Phase Transfer Catalysis; and Biocatalysis. -Provides the reader with an updated clear view of the current state of the challenging field of catalysis for API production -Focuses on the application of catalytic methods for the synthesis of known APIs -Presents every key reaction, including Diels-Alder, CH Insertions, Metal-catalytic coupling-reactions, and many more -Includes recent patent literature for completeness Covering a topic of great interest for synthetic chemists and R&D researchers in the pharmaceutical industry, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development is a must-read for every synthetic chemist working with APIs.
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
This volume provides an insight into the future strategies for commercial biocatalysis with a focus on sustainable technologies, together with chemoenzymatic and biotechnological approaches to synthesize various types of approved and new active pharmaceutical ingredients (APIs) via proven and latest synthetic routes using single-step biocatalytic or enzyme cascade reactions. Many of these drugs act as enzyme inhibitors, as discussed in a chapter with a variety of examples. The targeted enzymes are involved in diseases such as different cancers, metastatic and infectious diseases, osteoporosis, and cardiovascular disorders. The biocatalysts employed for API synthesis include hydrolytic enzymes, alcohol dehydrogenases, laccases, imine reductases, reductive aminases, peroxygenases, cytochrome P450 enzymes, polyketide synthases, transaminases, and halogenases. Many of them have been improved with respect to their properties by engineering methods. The book discusses the syntheses of drugs, including alkaloids and antibiotics, non-ribosomal peptides, antimalarial and antidiabetic drugs, prenylated xanthones, antioxidants, and many important (chiral) intermediates required for the synthesis of pharmaceuticals.
This ready reference not only presents the hot and emerging topic of modern flow chemistry, it is also unique in illustrating the important connection to sustainable chemistry. Focusing on more sustainable methods and applications, the text extensively covers every important field from reaction time optimization to waste minimization, and from safety improvements to microwave applications. In addition, green metrics are presented as a key aspect of the book, helping readers to evaluate the efficiency of flow technologies and their impact on the overall efficiency of a chemical process. An invaluable handbook for every chemist working in the laboratory, whether in academia or industry.
This book provides an overview of the world market of therapeutic enzymes and enzyme inhibitors, rare diseases, orphan drugs, the costs of drug development and therapies, and enzymes in downstream processing of pharmaceuticals. It discusses carbonic anhydrase inhibitors and their multiple drug interactions, carboxylesterase inhibitors for pharmaceutical applications, employment of inhibitors for the treatment of neurodegenerative diseases, use of engineered proteins, bioactive peptides, and fibrinolytic enzymes for thrombolytic therapy, and enzymes important for the design and development of new drugs/drug metabolites such as aldehyde oxidases and cytochrome P450 enzymes and the role the latter play in vascular biology and pathophysiology. The treatment of cancer is explored in connection with enzymatic amino acid deprivation therapies and new drugs that act as chemical degraders of oncogenic proteins. The book also introduces the resistance mechanisms of cancer. Furthermore, it provides an insight into the relationship between pathological conditions of cardiovascular disease and oxidative stress. The text also focuses on the potential use of nanoparticles as carriers for enzymes with medical relevance, computer-aided drug design for the identification of multi-target directed ligands, and the development of improved therapeutics through a glycan-“designer” approach. It concludes with an introduction to the chemoenzymatic synthesis of drugs.
Focusing on the three most critical components that successfully bring an API to market-process development, manufacturing, and governmental regulation and approval-this reference serves as a step-by-step guide to the planning and clear understanding of the bulk manufacturing of APIs. This guide offers current and timely discussions of the process development cycle, design engineering, the approval process, quality control and assurance, and validation, as well as plant manufacturing activities including materials management, maintenance, and safety.
This one-stop reference systematically covers key aspects in early drug development that are directly relevant to the discovery phase and are required for first-in-human studies. Its broad scope brings together critical knowledge from many disciplines, ranging from process technology to pharmacology to intellectual property issues. After introducing the overall early development workflow, the critical steps of early drug development are described in a sequential and enabling order: the availability of the drug substance and that of the drug product, the prediction of pharmacokinetics and -dynamics, as well as that of drug safety. The final section focuses on intellectual property aspects during early clinical development. The emphasis throughout is on recent case studies to exemplify salient points, resulting in an abundance of practice-oriented information that is usually not available from other sources. Aimed at medicinal chemists in industry as well as academia, this invaluable reference enables readers to understand and navigate the challenges in developing clinical candidate molecules that can be successfully used in phase one clinical trials.
A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.
This useful reference focuses on the currently available toolbox of bio-catalysed reductions of C=O, C=C and formal C=N bonds to show which transformations can be reliably used in manufacturing processes and which still require improvements. Following an introductory chapter, chapters 2-4 present the synthetic strategies that are currently available for the reduction of C=C and C=O bonds and for reductive amination, by means of whole-cell catalysts and isolated enzymes. Chapters 5-7 go on to describe the improvements achieved thus far, illustrating the current versatility of enzymes in organic synthesis. Chapters 8-12 present the improvements brought about by the optimization of reaction conditions, and the use of particular synthetic sequences. The final chapter describes practical applications of bio-reductions for the synthesis of active pharmaceutical ingredients. With its excellent and comprehensive overview, this book will be of great interest to those working in academia and industry. From the contents: * Development of Sustainable Biocatalyzed Reduction Processes for Organic Chemists * Reductases: From Natural Diversity to Biocatalysis and Emerging Enzymatic Activities. * Synthetic Strategies Based on C=C Bioreductions * Synthetic Strategies Based on C=O Bioreductions * Development of Novel Enzymes for the Improved Reduction of C=C Double Bonds * Development of Novel Enzymes for the Improved Reduction of C=O Double Bonds * Synthetic Applications of Aminotransferases * Strategies for Cofactor Regeneration in Biocatalyzed Reductions * Effects of Solvent System and Substrate Loading in Bioreduction * Perspectives in the Use of In-Situ Product Removal (ISPR) Techniques in Bioreductions * Multi-Enzymatic Cascade Reactions Based on Reduction Processes * Relevant Practical Applications of Bioreduction Processes in the Synthesis of Active Pharmaceutical Ingredients