Download Free Active Interrogation Measurements Of Induced Fission Neutrons From Low Enriched Uranium Book in PDF and EPUB Free Download. You can read online Active Interrogation Measurements Of Induced Fission Neutrons From Low Enriched Uranium and write the review.

The 1990s saw significant developments in the global non-proliferation landscape, resulting in a new period of safeguards development. The current publication, which is the second revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the safeguards techniques and equipment used for nuclear material accountancy, containment and surveillance measures, environmental sampling, and data security. New features include a section on new and novel technologies. As new verification measures continue to be developed, the material in this book will be reviewed periodically and updated versions issued.
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.
This volume constitutes the state-of-the-art in active interrogation, widely recognized as indispensable methods for addressing current and future nuclear security needs. Written by a leading group of science and technology experts, this comprehensive reference presents technologies and systems in the context of the fundamental physics challenges and practical requirements. It compares the features, limitations, technologies, and impact of passive and active measurement techniques; describes radiation sources for active interrogation including electron and ion accelerators, intense lasers, and radioisotope-based sources; and it describes radiation detectors used for active interrogation. Entire chapters are devoted to data acquisition and processing systems, modeling and simulation, data interpretation and algorithms, and a survey of working active measurement systems. Active Interrogation in Nuclear Security is structured to appeal to a range of audiences, including graduate students, active researchers in the field, and policy analysts. The first book devoted entirely to active interrogation Presents a focused review of the relevant physics Surveys available technology Analyzes scientific and technology trends Provides historical and policy context Igor Jovanovic is a Professor of Nuclear Engineering and Radiological Sciences at the University of Michigan and has previously also taught at Penn State University and Purdue University. He received his Ph.D. from University of California, Berkeley and worked as physicist at Lawrence Livermore National Laboratory. Dr. Jovanovic has made numerous contributions to the science and technology of radiation detection, as well as the radiation sources for use in active interrogation in nuclear security. He has taught numerous undergraduate and graduate courses in areas that include radiation detection, nuclear physics, and nuclear security. At University of Michigan Dr. Jovanovic is the director of Neutron Science Laboratory and is also associated with the Center for Ultrafast Optical Science. Anna Erickson is an Assistant Professor in the Nuclear and Radiological Engineering Program of the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Previously, she was a postdoctoral researcher in the Advanced Detectors Group at Lawrence Livermore National Laboratory. Dr. Erickson received her PhD from Massachusetts Institute of Technology with a focus on radiation detection for active interrogation applications. Her research interests focus on nuclear non-proliferation including antineutrino analysis and non-traditional detector design and characterization. She teaches courses in advanced experimental detection for reactor and nuclear nonproliferation applications, radiation dosimetry and fast reactor analysis.
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.
Structural Chemistry of Inorganic Actinide Compounds is a collection of 13 reviews on structural and coordination chemistry of actinide compounds. Within the last decade, these compounds have attracted considerable attention because of their importance for radioactive waste management, catalysis, ion-exchange and absorption applications, etc. Synthetic and natural actinide compounds are also of great environmental concern as they form as a result of alteration of spent nuclear fuel and radioactive waste under Earth surface conditions, during burn-up of nuclear fuel in reactors, represent oxidation products of uranium miles and mine tailings, etc. The actinide compounds are also of considerable interest to material scientists due to the unique electronic properties of actinides that give rise to interesting physical properties controlled by the structural architecture of respective compounds. The book provides both general overview and review of recent developments in the field, including such emergent topics as nanomaterials and nanoparticles and their relevance to the transfer of actinides under environmental conditions.* Covers over 2,000 actinide compounds including materials, minerals and coordination polymers* Summarizes recent achievements in the field* Some chapters reveal (secret) advances made by the Soviet Union during the 'Cold war'
As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. There have been many advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fifth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. It also includes more problems and updated references and bibliographies, and step-by-step derivations and numerous examples illustrate key concepts. New to the Fifth Edition: • Expanded chapters on semiconductor detectors, data analysis methods, health physics fundamentals, and nuclear forensics. • Updated references and bibliographies. • New and expanded problems.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.