Download Free Active Acoustic Waves And Electron In Gallium Arsenide Book in PDF and EPUB Free Download. You can read online Active Acoustic Waves And Electron In Gallium Arsenide and write the review.

The alloy system A1GaAs/GaAs is potentially of great importance for many high-speed electronics and optoelectronic devices, because the lattice parameter difference GaAs and A1GaAs is very small, which promises an insignificant concentration of undesirable interface states. Thanks to this prominent feature, a number of interesting properties and phenomena, such as high-mobility low-dimensional carrier gases, resonant tunnelling and fractional quantum Hall effect, have been found in the A1GaAs/GaAs heterostructure system. New devices, such as modulation-doped FETs, heterojunction bipolar transistors, resonant tunnelling transistors, quantum-well lasers, and other photonic and quantum-effect devices, have also been developed recently using this material system. These areas are recognized as not being the most interesting and active fields in semiconductor physics and device engineering.
Gallium Arsenide IC Applications Handbook is the first text to offer a comprehensive treatment of Gallium Arsenide (GaAs) integrated chip (IC) applications, specifically in microwave systems. The books coverage of GaAs in microwave monolithic ICs demonstrates why GaAs is being hailed as a material of the future for the various advantages it holds over silicon. This volume provides scientists, physicists, electrical engineers, and technology professionals and managers working on microwave technology with practical information on GaAs applications in radar, electronic warfare, communications, consumer electronics, automotive electronics and traffic control. Includes an executive summary in each volume and chapter Facilitates comprehension with its tutorial writing style Covers key technical issues Emphasizes practical aspects of the technology Contains minimal mathematics Provides a complete reference list
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
The technology of acoustical imaging has advanced rapidly over the last sixty years, and now represents a sophisticated technique applied to a wide range of fields including non-destructive testing, medical imaging, underwater imaging and SONAR, and geophysical exploration. Acoustical Imaging: Techniques and Applications for Engineers introduces the basic physics of acoustics and acoustical imaging, before progressing to more advanced topics such as 3D and 4D imaging, elasticity theory, gauge invariance property of acoustic equation of motion and acoustic metamaterials. The author draws together the different technologies in sonar, seismic and ultrasound imaging, highlighting the similarities between topic areas and their common underlying theory. Key features: Comprehensively covers all of the important applications of acoustical imaging. Introduces the gauge invariance property of acoustic equation of motion, with applications in the elastic constants of isotropic solids, time reversal acoustics, negative refraction, double negative acoustical metamaterial and acoustical cloaking. Contains up to date treatments on latest theories of sound propagation in random media, including statistical treatment and chaos theory. Includes a chapter devoted to new acoustics based on metamaterials, a field founded by the author, including a new theory of elasticity and new theory of sound propagation in solids and fluids and tremendous potential in several novel applications. Covers the hot topics on acoustical imaging including time reversal acoustics, negative refraction and acoustical cloaking. Acoustical Imaging: Techniques and Applications for Engineers is a comprehensive reference on acoustical imaging and forms a valuable resource for engineers, researchers, senior undergraduate and graduate students.
Surface acoustic wave (SAW) devices are recognized for their versatility and efficiency in controlling and processing electrical signals. This has resulted in a multitude of device concepts for a wide range of signal processing functions, such as delay lines, filters, resonators, pulse compressors, convolvers, and many more. As SAW technology has found its way into mass market products such as TV receivers, pagers, keyless entry systems and cellular phones, the production volume has risen to millions of devices produced every day. At the other end of the scale, these are specialized high performance signal processing SAW devices for satellite communication and military applications, such as radar and electronic warfare. This volume, together with Volume 1, presents an overview of recent advances in SAW technology, systems and applications by some of the foremost researchers in this exciting field. Contents: Coupling-of-Modes Analysis of SAW Devices (V Plessky & J Koskela); Theory and Applications of Green''s Functions (A R Baghai-Wadji); New Piezoelectric Substrates for SAW Devices (J Kosinski); Pseudo and High Velocity Pseudo SAWs (M P da Cunha); SAW Devices Beyond 5 GHz (H Odagawa & K Yamanouchi); Wireless SAW Identification and Sensor Systems (F Schmidt & G Scholl); Interaction of Surface Acoustic Waves, Electrons, and Light (A Wixforth). Readership: Graduate students, researchers and academics in device and circuit design, as well as designers of mobile communications systems.
This multi-contributor handbook discusses Molecular Beam Epitaxy (MBE), an epitaxial deposition technique which involves laying down layers of materials with atomic thicknesses on to substrates. It summarizes MBE research and application in epitaxial growth with close discussion and a 'how to' on processing molecular or atomic beams that occur on a surface of a heated crystalline substrate in a vacuum.MBE has expanded in importance over the past thirty years (in terms of unique authors, papers and conferences) from a pure research domain into commercial applications (prototype device structures and more at the advanced research stage). MBE is important because it enables new device phenomena and facilitates the production of multiple layered structures with extremely fine dimensional and compositional control. The techniques can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. This book covers the advances made by MBE both in research and mass production of electronic and optoelectronic devices. It includes new semiconductor materials, new device structures which are commercially available, and many more which are at the advanced research stage. - Condenses fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Coverage of MBE as mass production epitaxial technology enhances processing efficiency and throughput for semiconductor industry and nanostructured semiconductor materials research community
Sensor technologies and applications are evolving rapidly driven by the demand for new sensors for monitoring and diagnostic purposes to enable improvements in human health and safety. Simultaneously, sensors are required to consume less power, be autonomous, cost less, and be connected by the Internet of Things. New sensor technologies are being developed to fulfill these needs. This book reviews the latest developments in sensor technology and gives the reader an overview of the state-of-the-art in key areas, such as sensors for diagnostics and monitoring. Features Provides an overview of sensor technologies for monitoring and diagnostics applications. Presents state-of-the-art developments in selected topics for sensors that can be used for monitoring and diagnostics in future healthcare, structural monitoring, and smart environment applications. Features contributions from leading international experts in both industry and academia. Explores application areas that include medical diagnostics and screening, health monitoring, smart textiles, and structural monitoring.