Download Free Activated Carbon Adsorption Of Trace Organic Compounds Book in PDF and EPUB Free Download. You can read online Activated Carbon Adsorption Of Trace Organic Compounds and write the review.

This report reviews the Army's evaluation of carbon filters for use in the baseline incineration PAS, as well as the Army's change management process (the Army's tool for evaluating major equipment and operational changes to disposal facilities). In preparing this report, members of the Stockpile Committee evaluated exhaust gas emissions testing at the two operating baseline incineration systems, JACADS and the TOCDF; evaluated the development of the dilute SOPC carbon filter simulation model; and evaluated the conceptual design of a modified PAS with an activated carbon filter. The two major risk assessments conducted for each continental disposal site that use the baseline system, namely, (1) the quantitative risk assessment, which evaluates the risks and consequences of accidental agent releases, and (2) the health risk assessment, which evaluates the potential effects of nonagent emissions on human health and the environment, were also examined.
Many water treatment plants need to remove objectionable trace organic compounds, and activated carbon adsorption is often the best available technology. Utilities face the challenge of having to choose from a large variety of activated carbons, and iodine number or BET surface area values are often utilized in the selection process. Although neither parameter correlates well with adsorption capacities, alternative activated carbon selection criteria based on fundamental adsorbent and adsorbate properties are lacking to date. The first objective of this research was to systematically evaluate the effects of activated carbon pore structure and surface chemistry on the adsorption of two common drinking water contaminants: the relatively polar fuel oxygenate methyl tertiary-butyl ether (MTBE) and the relatively nonpolar solvent trichloroethene (TCE). The second objective was to develop simple descriptors of activated carbon characteristics that facilitate the selection of suitable adsorbents for the removal of organic contaminants from drinking water.Originally published by AwwaRF for its subscribers in 2003 This publication can also be purchased and downloaded via Pay Per View on Water Intelligence Online - click on the Pay Per View icon below
Adsorption processes have played a central role in water treatment for many years but their importance is on the rise with the continuous discoveries of new micropollutants in the water cycle (pharmaceuticals for example). In addition to the classical application in drinking water treatment, other application fields are attracting increasing interest, such as wastewater treatment, groundwater remediation, treatment of landfill leachate, and so on. Based on the author's long-term experience in adsorption research, the scientific monograph treats the theoretical fundamentals of adsorption technology for water treatment from a practical perspective. It presents all the basics needed for experimental adsorption studies as well as for process modelling and adsorber design. Topics discussed in the monograph include: introduction into basic concepts and practical applications of adsorption processes; adsorbents and their characterisation, single and multi-solute adsorption equilibria, adsorption kinetics, adsorption dynamics in fixed-bed adsorbers and fixed-bed adsorber design, regeneration and reactivation of adsorbents, introduction into geosorption processes in bank filtration and groundwater recharge. According to the increasing importance of micropollutants in the water cycle, particular attention is paid to their competitive adsorption in presence of background organic matter. Clear illustrations, extensive literature references and a useful index make this work indispensible for both scientists and technicians involved in water treatment.
High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of organic and inorganic pollutants from aqueous solutions. Activated Carbon Adsorption introduces the parameters and mechanisms involved in the activated carbon adsorption
Use this new book to solve water treatment problems related to toxicity, taste and odor, and bacteria regrowth. Influence and Removal of Organics in Drinking Water presents the latest advances in oxidation technologies, ozonation, membrane technology, micropollutant removal, and filtration processes. Fundamental aspects of coagulation, flocculation, adsorption, ozonation, preozonation, and granular activated carbon are discussed. Filtration methods covered include biological filtration, membrane filtration, and ultrafiltration. The book will provide a useful reference for water treatment plant managers and operators, water engineers, water supply managers, and consultants.
Part of Water Quality Set - Buy all four books and save over 30% on buying separately! Bioanalytical Tools in Water Quality Assessment reviews the application of bioanalytical tools to the assessment of water quality including surveillance monitoring. The types of water included range from wastewater to drinking water, including recycled water, as well as treatment processes and advanced water treatment. Bioanalytical Tools in Water Quality Assessment not only demonstrates applications but also fills in the background knowledge in toxicology/ecotoxicology needed to appreciate these applications. Each chapter summarises fundamental material in a targeted way so that information can be applied to better understand the use of bioanalytical tools in water quality assessment. Bioanalytical tools in Water Quality Assessment can be used by lecturers teaching academic and professional courses and also by risk assessors, regulators, experts, consultants, researchers and managers working in the water sector. It can also be a reference manual for environmental engineers, analytical chemists, and toxicologists. Authors: Beate Escher, National Research Centre for Environmental Toxicology (EnTox), The University of Queensland, Australia, Frederic Leusch, Smart Water Research Facility (G51), Griffith University Gold Coast Campus, Australia. With contributions by Heather Chapman and Anita Poulsen
Given the presence of a wide variety of contaminants in the environment, it is important to understand what drives a contaminant from one medium to another, as well as the manner and extent to which a contaminant associates with the different media or phases within a local environmental system. Partition and Adsorption of Organic Contaminants in Environmental Systems forms a comprehensive resource on the behavioral characteristics of contaminants so that appropriate strategies can be adopted to either prevent or minimize their adverse impacts on human welfare and natural resources. Cary Chiou’s far-reaching text depicts the processes by which nonionic organic contaminants are sorbed to natural biotic and abiotic substances. This book focuses on physical principles and system parameters that affect the contaminant uptake by soil from water, air, and other media; by fish from water; and by plants from soil and water. As contaminant uptake by natural organic substances is often predominantly a partition interaction, the partition characteristics in several solvent-water model mixtures are treated in detail to elucidate the relevant physicochemical parameters. The account of contaminant sorption to soils, fish, and plants is strengthened by companion chapters on: Fundamentals of solution theory Interphase partition equations Fundamentals of adsorption theory Vapor adsorption on mineral and carbonaceous solids No other single source in the field delivers as compelling a combination of background understanding and "state-of-the-science" comprehension of current issues. Ideally suited for a graduate-level environmental course, Partition and Adsorption of Organic Contaminants in Environmental Systems also serves as a technical guide to current and future research in the field.