Download Free Actinides Volume 802 Book in PDF and EPUB Free Download. You can read online Actinides Volume 802 and write the review.

Actinides are an important, if sometimes unwanted, part of highly technological societies. Actinides pose an extreme scientific challenge to the materials research community. Their complex electronic structure results in many abnormal properties that even today are not well understood. The focus of this book is fundamental actinide science and its role in resolving technical challenges posed by actinide materials. Both basic and applied experimental approaches, as well as theoretical modeling and computational simulations, are featured. Topics for the inaugural actinides symposium include: actinide phase stability, transformations and aging; phononic and electronic structure; actinides and the environment; actinide solution and interfacial chemistry; actinide science and technology; theory of actinides - elemental phases, alloys and compounds; and superconductivity, correlated behavior and quantum criticality.
Actinides are an important, if sometimes unwanted, part of highly technological societies. Actinides pose an extreme scientific challenge to the materials research community. Their complex electronic structure results in many abnormal properties that even today are not well understood. The focus of this book is fundamental actinide science and its role in resolving technical challenges posed by actinide materials. Both basic and applied experimental approaches, as well as theoretical modeling and computational simulations, are featured. Topics for the inaugural actinides symposium include: actinide phase stability, transformations and aging; phononic and electronic structure; actinides and the environment; actinide solution and interfacial chemistry; actinide science and technology; theory of actinides - elemental phases, alloys and compounds; and superconductivity, correlated behavior and quantum criticality.
The Chemistry of the Actinide and Transactinide Elements is a contemporary and definitive compilation of chemical properties of all of the actinide elements, especially of the technologically important elements uranium and plutonium, as well as the transactinide elements. In addition to the comprehensive treatment of the chemical properties of each element, ion, and compound from atomic number 89 (actinium) through to 109 (meitnerium), this multi-volume work has specialized and definitive chapters on electronic theory, optical and laser fluorescence spectroscopy, X-ray absorption spectroscopy, organoactinide chemistry, thermodynamics, magnetic properties, the metals, coordination chemistry, separations, and trace analysis. Several chapters deal with environmental science, safe handling, and biological interactions of the actinide elements. The Editors invited teams of authors, who are active practitioners and recognized experts in their specialty, to write each chapter and have endeavoured to provide a balanced and insightful treatment of these fascinating elements at the frontier of the periodic table. Because the field has expanded with new spectroscopic techniques and environmental focus, the work encompasses five volumes, each of which groups chapters on related topics. All chapters represent the current state of research in the chemistry of these elements and related fields.
The fourth edition of "The Chemistry of the Actinide and Transactinide Elements" comprises all chapters in volumes 1 through 5 of the third edition (published in 2006) plus a new volume 6. To remain consistent with the plan of the first edition, “ ... to provide a comprehensive and uniform treatment of the chemistry of the actinide [and transactinide] elements for both the nuclear technologist and the inorganic and physical chemist,” and to be consistent with the maturity of the field, the fourth edition is organized in three parts. The first group of chapters follows the format of the first and second editions with chapters on individual elements or groups of elements that describe and interpret their chemical properties. A chapter on the chemical properties of the transactinide elements follows. The second group, chapters 15-26, summarizes and correlates physical and chemical properties that are in general unique to the actinide elements, because most of these elements contain partially-filled shells of 5f electrons whether present as isolated atoms or ions, as metals, as compounds, or as ions in solution. The third group, chapters 27-39, focuses on specialized topics that encompass contemporary fields related to actinides in the environment, in the human body, and in storage or wastes. Two appendices at the end of volume 5 tabulate important nuclear properties of all actinide and transactinide isotopes. Volume 6 (Chapters 32 through 39) consists of new chapters that focus on actinide species in the environment, actinide waste forms, nuclear fuels, analytical chemistry of plutonium, actinide chalcogenide and hydrothermal synthesis of actinide compounds. The subject and author indices and list of contributors encompass all six volumes.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 53, is a continuous series covering all aspects of rare earth science, including chemistry, life sciences, materials science and physics. The book focuses on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but when relevant, information is included on the related actinide elements. Individual chapters are comprehensive, up-to-date, critical reviews written by highly experienced, invited experts, with this release including chapters on a Comparison of the Electronic Properties of Lanthanides with Formally Isoelectronic Actinides, Redox catalysis with redox-inactive rare-earth ions in artificial photosynthesis, and more. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines, and integrates, both the fundamentals and applications of these elements with two published volumes each year. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains Individual chapters that are comprehensive and broad, with critical reviews - Provides contributions from highly experienced, invited experts
The first edition of this work appeared almost thirty years ago, when, as we can see in retrospect, the study of the actinide elements was in its first bloom. Although the broad features of the chemistry of the actinide elements were by then quite well delineated, the treatment of the subject in the first edition was of necessity largely descriptive in nature. A detailed understanding of the chemical consequences of the characteristic presence of Sf electrons in most of the members of the actinide series was still for the future, and many of the systematic features of the actinide elements were only dimly apprehended. In the past thirty years all this has changed. The application of new spectroscopic techniques, which came into general use during this period, and new theoretical insights, which came from a better understanding of chemical bonding, inorganic chemistry, and solid state phenomena, were among the important factors that led to a great expansion and maturation in actinide element research and a large number of new and important findings. The first edition consisted of a serial description of the individual actinide elements, with a single chapter devoted to the six heaviest elements (lawrencium, the heaviest actinide, was yet to be discovered). Less than 15 % of the text was devoted to a consideration of the systematics of the actinide elements.
The measure of a thermoelectric material is given by the material's figure of merit. For over three decades the best thermoelectric materials had a ZT = 1. Recently, however, there are reports of new methods of materials synthesis that result in improvements beyond this performance. In addition, rapid characterization, as well as faster theoretical modeling of thermoelectric materials, has resulted in a more rapid evaluation of new materials. This book offers a look at these results and provides a benchmark for the current state in the field of thermoelectric materials research and development. The focus is on new and innovative directions that will lead to the next generation thermoelectric materials for small-scale refrigeration and power generation applications. The book emphasizes the multidisciplinary nature of the research needed to advance the science and technology of the field. Both theoretical and experimental studies are featured. Topics include: low-dimensional systems and nanocomposites; devices; oxides; skutterudites; complex bulk materials and measurements; novel approaches; and thermoelectric materials and technology.
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book, first published in 2004, presents advances in fundamental understanding, development, and applications of chemical-mechanical polishing (CMP).