Download Free Acta Crystallographica Book in PDF and EPUB Free Download. You can read online Acta Crystallographica and write the review.

This book invites you on a systematic tour through the fascinating world of crystals and their symmetries. The reader will gain an understanding of the symmetry of external crystal forms (morphology) and become acquainted with all the symmetry elements needed to classify and describe crystal structures. The book explains the context in a very vivid, non-mathematical way and captivates with clear, high-quality illustrations. Online materials accompany the book; including 3D models the reader can explore on screen to aid in the spatial understanding of the structure of crystals. After reading the book, you will not only know what a space group is and how to read the International Tables for Crystallography, but will also be able to interpret crystallographic specifications in specialist publications. If questions remain, you also have the opportunity to ask the author on the book's website.
This textbook is a complete and clear introduction to the field of crystallography. It includes an extensive discussion on the 14 Bravais lattices and their reciprocals, the basic concepts of point- and space-group symmetry, the crystal structure of elements and binary compounds, and much more.The purpose of this textbook is to illustrate rather th
In recent years crystallographic techniques have found applications in a wide range of subjects, and these applications in turn have led to exciting developments in the field of crystallography itself. This completely revised text offers a rigorous treatment of the theory and describes experimental applications in many fields: crystal symmetry, crystallographic computing, X-ray diffraction, crystal structure solution, mineral and inorganic crystal chemistry, protein crystallography, crystallography of real crystals, and crystal physics. A set of pedagogical tools on CD-ROM has been added to this new edition.
Closely follows an actual structural determination. After some introductory material on the nature of x-rays, the diffraction process, and the internal geometry of crystals, the selection and preparation of a crystal are considered. Techniques of measuring raw x-ray data are covered, plus their reduction into a useable form. The second part discusses both traditional and novel methods of solving the ``phase'' problem, the principal difficulty in x-ray structure determination. The third part considers how to extract the most information from the data and how to evaluate its reliability. Finally, there is a discussion of sources of error in practice and interpretation.
A concise introduction to modern crystal structure determination, emphasizing both the crystallographic background and the successive practical steps. In the theoretical sections, more importance is attached to a good understanding, than to a rigorous mathematical treatment. The most important measuring techniques, including the use of modern area detectors, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Special emphasis is put on the ability to recognize and avoid possible errors and traps, and to judge the quality of results.
The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
'This is a book for crystal chemistry lovers written by one of the pioneers of solid-state chemistry.'MRS BulletinDevoted to a diverse group of solid state scientists, the book has two objectives, both relating to structural chemistry: (i) a progressive analytic familiarization with the main parameters that govern the organization of crystallized matter and related crystal structures, (ii) a study of what are the various ways to 'read' a structure far beyond its representation in scientific articles. Hence, the reader will, from numerous examples illustrated in color, analyze what are the main characteristics of these structures, from their geometric characteristics, their coordination polyhedra, their connections with the resulting dimensionalities of these solids, including also the defects they exhibit, before looking at possibilities to classify structures, within which recurrence laws can emerge.Chemists are required to understand the potentials of a new structure for becoming future materials scientists. The first part of the book is by no means a database for known structures, but facilitates a progressive understanding of the organization of the solid state. With these tools in hand, the reader is invited in the later part of the book to analyze new structures, and to also use new concepts for viewing structures in a more synthetic way for the future. Such new vision is already leading to the creation of completely new solids with outstanding characteristics that find applications in societal problems concerning energy, energy savings, environment and health.The content is not exclusively academic but relates to the creation of innovative materials, through a more physical approach, that might condition the future of materials.
Innovations in crystallographic instrumentation and the rapid development of methods of diffraction measurement have led to a vast improvement in our ability to determine crystal and molecular structure. This up-to-date resource will allow the reader to harness the potential of X-ray diffraction instruments. Different sources of X-radiation used in crystallography are introduced, including synchrotron radiation, as well as a systematic review of detectors for X-rays and basic instruments for single crystal and powder diffractometry. The principles of the diffraction experiment are discussed and related to their practical application with a comparative description of different scan procedures. Diffraction data collection and processing are also reviewed and methods for error correction are described. This book will provide a useful guide for researchers and students starting in this area of science, as well as skilled crystallographers.
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
The 10th edition of the World Directory of Crystallographers and of Other Scientists Employing Crystallographic Methods is a revised and up-to-date edition of the World Directory and contains the current addresses, academic status and research interests of over 8000 scientists in 74 countries. It is produced directly from the regularly updated electronic World Directory database, which is accessible via the World-Wide Web. Full details of the database are given in an Annex to the printed edition.