Download Free Acoustic Surface Wave Propagation And Amplification In Piezoelectric Semiconductors Book in PDF and EPUB Free Download. You can read online Acoustic Surface Wave Propagation And Amplification In Piezoelectric Semiconductors and write the review.

Information essential for the design of acoustic surface wave filters, signal processors, and other miniature, low cost, reliable devices for use in communications and electronic sensing is given in this report. Computations of surface wave velocity and electromechanical power flow angle, and estimates of surface wave coupling to interdigital transducers are given for various orientations of the following surface wave substrate materials: Ba2NaNb5O15, Bi12GeO20, CdS, Diamond, Eu3Fe5O15, Gadolinium Gallium Garnet, GaAs, Germanium, InSb, InAs, PbS, LiNbO3, MgO, Quartz, Rutile, Sapphire, Silicon, Spinel, TeO2, YAG, YGaG, YIG, and ZnO. Particular cuts of interest are then chosen for more detailed numerical calculations of mechanical and electrical parameters governing acoustic wave propagation in crystalline media. Similar data is given for common metals. A list of material constants and a bibliography of 520 surface wave papers are also included. (Author).
This is the most systematic, comprehensive and up-to-date book on the theoretical analysis of piezoelectric devices. It is a natural continuation of the author's two previous books: OC An Introduction to the Theory of Piezoelectricity OCO (Springer, 2005) and OC The Mechanics of Piezoelectric Structures OCO (World Scientific, 2006). Based on the linear, nonlinear, three-dimensional and lower-dimensional structural theories of electromechanical materials, theoretical results are presented for devices such as piezoelectric resonators, acoustic wave sensors, and piezoelectric transducers. The book reflects the contribution to the field from Mindlin's school of applied mechanics researchers since the 1950s. Sample Chapter(s). Chapter 1: Three-Dimensional Theories (537 KB). Contents: Three-Dimensional Theories; Thickness-Shear Modes of Plate Resonators; Slowly Varying Thickness-Shear Modes; Mass Sensors; Fluid Sensors; Gyroscopes OCo Frequency Effect; Gyroscopes OCo Charge Effect; Acceleration Sensitivity; Pressure Sensors; Temperature Sensors; Piezoelectric Generators; Piezoelectric Transformers; Power Transmission Through an Elastic Wall; Acoustic Wave Amplifiers. Readership: Graduate students, academics and researchers in electrical and electronic engineering, engineering mechanics and applied physics."
The report describes the discovery of 'square-wave' type current oscillations and the traveling high electric field domains in cadmium sulfide. Numerous experiments were performed to determine the behavior of the traveling domain, the oscillation conditions and important parameters. Experimental results lead to the conclusion that both current saturation and current oscillations as observed are due to amplification of the shear wave components of thermal acoustic noise. A simple linear theory which predicts the occurrence of current oscillations in piezoelectric semiconductors has been developed. The saturation of the sample current is also treated theoretically. Good agreement with experimental results is obtained with both theories. The effect of the current saturation and the oscillations on the amplification of an acoustic signal is discussed. Theory indicates that the maximum possible acoustic gain is of the order of 75-100 dB. (Author).
This volume covers important subjects in the field of piezoelectric devices and applications with the latest research on piezoelectricity, acoustic waves, manufacturing technology, and design techniques. It includes up-to-date research and information on materials, new products, technological trends, and design methods of benefit to academics and researchers in the piezoelectric device industry. Contributors to this volume include prominent experts such as Clemens Ruppel of Epcos, Daining Fang of Tsinghua University, Tong-Yi Zhang of University of Science and Technology, Hong Kong, and CS Lam of TXC Corporation. A number of papers have been dedicated to Professor Harry F Tiersten of Resselear Polytechnic Institute, who passed away in 2006, for his contributions to the fundamental theory of piezoelectricity and methods for acoustic wave device analysis. Readership: Graduate students, academics, researchers, and professionals in piezoelectric devices and applications for communication, sensors, MEMS, and other systems.