Download Free Acoustic Relaxation In Unconsolidated Marine Sediments Book in PDF and EPUB Free Download. You can read online Acoustic Relaxation In Unconsolidated Marine Sediments and write the review.

Acoustic relaxation theory for visco-elastic media provides for sound propagation in unconsolidated marine sediments. For the frequency range of 14 to 200 kHz, dispersion for compressional-wave and shear-wave velocity is negligible for all practical purposes, but sound absorption shows significant changes. (Author).
In recent years, research on acoustic remote sensing of the ocean has evolved considerably, especially in studying complex physical and biological processes in shallow water environments. To review the state of the art, an international workshop was held at Carvoeiro, Portugal, in March 1999, bringing together leading international researchers in the field. In contrast to much of the recent theoretical work, emphasis was placed on the experimental validation of the techniques. This volume, based on presentations at this workshop, summarizes a range of diverse and innovative applications. The invited contributions explore the use of acoustics to measure bottom properties and morphology, as well as to probe buried objects within the sediment. Within the water column, sound is applied to imaging of oceanographic features such as currents and tides or monitoring of marine life. Another key theme is the use of sound to solve geometric inverse problems for precise tracking of undersea vehicles. Audience: This volume should be useful both to the novice seeking an introduction to the field and to advanced researchers interested in the latest developments in acoustic sensing of the ocean environment. The workshop was sponsored by the Fundação para a Ciêcia e a Tecnologia (Portuguese Foundation for Science and Technology).
Sonar performance modelling (SPM) is concerned with the prediction of quantitative measures of sonar performance, such as probability of detection. It is a multi-disciplinary subject, requiring knowledge and expertise in the disparate fields of underwater acoustics, acoustical oceanography, sonar signal processing and statistical detection theory. No books have been published on this subject, however, since the 3rd edition of Urick’s classic work 25 years ago and so Dr Ainslie’s book will fill a much-needed gap in the market. Currently, up-to-date information can only be found, in different forms and often with conflicting information, in various journals, conference and textbook publications. Dr Michael Ainslie is eminently qualified to write this unique book. He has worked on sonar performance modeling problems since 1983. He has written many peer reviewed research articles and conference papers related to sonar performance modeling, making contributions in the fields of sound propagation and detection theory.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
This book presents a concise description of the acoustics of ocean sediment acoustics, including the latest developments that address the discrepancies between theoretical models and experimental measurements. This work should be of interest to ocean acoustic engineers and physicists, as well as graduate students and course instructors. The seabed is neither a liquid nor a solid, but a fluid saturated porous material that obeys the wave equations of a poroelastic medium, which are significantly more complicated than the equations of either a liquid or a solid. This volume presents a model of seabed acoustics with input parameters that allow the model to cover a wide range of sediment types. The author includes example reflection and transmission curves which may be used as typical for a range of sediment types. The contents of this book will allow the reader to understand the physical processes involved in the reflection, propagation, and attenuation of sound and shear waves in ocean sediments and to model the acoustic properties for a wide range of applications.
This book contains 67 papers presented at ICTCA2001. It includes three keynote addresses surveying the frontier developments in computational and theoretical acoustics. The papers cover aero-, seismo- and ocean acoustics, as well as ultrasonics. Computational methods, numerical simulation, theoretical analysis and experimental results are emphasized by different papers.The proceedings have been selected for coverage in: Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)