Download Free Acoustic Propagation Through Sound Speed Heterogeneity Book in PDF and EPUB Free Download. You can read online Acoustic Propagation Through Sound Speed Heterogeneity and write the review.

The goal of this work is to quantitatively understand the effects on low-frequency, long-range ocean acoustic propagation by small-scale variability in the sound speed. These variations are due to internal waves and to "spice", temperature and salinity variations that don't affect the water density.
This book is a research monograph on high-Frequency Seafloor Acoustics. It is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. It provides a critical evaluation of the data and models pertaining to high-frequency acoustic interaction with the seafloor, which will be of interest to researchers in underwater acoustics and to developers of sonars. Models and data are presented so as to be readily usable, backed up by extensive explanation. Much of the data is new, and the discussion in on two levels: concise descriptions in the main text backed up by extensive technical appendices.
This is the first book to offer a complete and rigorous study of sound propagation and scattering in moving media that have regular and random inhomogeneities in adiabatic sound speed, density and medium velocity. The book is an invaluable resource for engineers and scientists who work on outdoor noise control, on acoustical detection and ranging in the atmosphere, and on acoustal remote sensing of the atmosphere and ocean, whether they are based in the industry, or government and military laboritories and institutions. It will be required reading for researchers who use numerical methods in these fields and in its step by step approach makes it an important reference for teachers and graduate students.
Written at an intermediate level in a way that is easy to understand, Fundamentals and Applications of Ultrasonic Waves, Second Edition provides an up-to-date exposition of ultrasonics and some of its main applications. Designed specifically for newcomers to the field, this fully updated second edition emphasizes underlying physical concepts over mathematics. The first half covers the fundamentals of ultrasonic waves for isotropic media. Starting with bulk liquid and solid media, discussion extends to surface and plate effects, at which point the author introduces new modes such as Rayleigh and Lamb waves. This focus on only isotropic media simplifies the usually complex mathematics involved, enabling a clearer understanding of the underlying physics to avoid the complicated tensorial description characteristic of crystalline media. The second part of the book addresses a broad spectrum of industrial and research applications, including quartz crystal resonators, surface acoustic wave devices, MEMS and microacoustics, and acoustic sensors. It also provides a broad discussion on the use of ultrasonics for non-destructive evaluation. The author concentrates on the developing area of microacoustics, including exciting new work on the use of probe microscopy techniques in nanotechnology. Focusing on the physics of acoustic waves, as well as their propagation, technology, and applications, this book addresses viscoelasticity, as well as new concepts in acoustic microscopy. It updates coverage of ultrasonics in nature and developments in sonoluminescence, and it also compares new technologies, including use of atomic force acoustic microscopy and lasers. Highlighting both direct and indirect applications for readers working in neighboring disciplines, the author presents particularly important sections on the use of microacoustics and acoustic nanoprobes in next-generation devices and instruments.
This monograph deals with the behavior of essentially nonlinear heterogeneous materials in processes occurring under intense dynamic loading, where microstructural effects play the main role. This book is not an introduction to the dynamic behavior of materials, and general information available in other books is not included. The material herein is presented in a form I hope will make it useful not only for researchers working in related areas, but also for graduate students. I used it successfully to teach a course on the dynamic behavior of materials at the University of California, San Diego. Another course well suited to the topic may be nonlinear wave dynamics in solids, especially the part on strongly nonlinear waves. About 100 problems presented in the book at the end of each chapter will help the reader to develop a deeper understanding of the subject. I tried to follow a few rules in writing this book: (1) To focus on strongly nonlinear phenomena where there is no small parameter with respect to the amplitude of disturbance, including solitons, shock waves, and localized shear. (2) To take into account phenomena sensitive to materials structure, where typical space scale of material parameters (particle size, cell size) are presented in the models or are variable in experimental research.
In this book, key discoveries in the field of statistical ocean acoustics over the last 35 years are addressed with illustrations from ocean observations.
This comprehensive book covers the everyday use and underlying principles of radiation dosimeters used in radiation oncology clinics. It provides an up-to-date reference spanning the full range of current modalities with emphasis on practical know-how. The main audience is medical physicists, radiation oncology physics residents, and medical physics graduate students. The reader gains the necessary tools for determining which detector is best for a given application. Dosimetry of cutting edge techniques from radiosurgery to MRI-guided systems to small fields and proton therapy are all addressed. Main topics include fundamentals of radiation dosimeters, brachytherapy and external beam radiation therapy dosimetry, and dosimetry of imaging modalities. Comprised of 30 chapters authored by leading experts in the medical physics community, the book: Covers the basic principles and practical use of radiation dosimeters in radiation oncology clinics across the full range of current modalities. Focuses on providing practical guidance for those using these detectors in the clinic. Explains which detector is more suitable for a particular application. Discusses the state of the art in radiotherapy approaches, from radiosurgery and MR-guided systems to advanced range verification techniques in proton therapy. Gives critical comparisons of dosimeters for photon, electron, and proton therapies.