Download Free Acoustic Particle Velocity Measurements Using Lasers Book in PDF and EPUB Free Download. You can read online Acoustic Particle Velocity Measurements Using Lasers and write the review.

This book concerns the presentation of particle velocity measurement for acoustics using lasers, including Laser Doppler Velocimetry (LDV or Anemometry (LDA)) and Particle Imagery Velocimetry (PIV). The objective is first to present the importance of measuring the acoustic velocity, especially when the acoustic equations are nonlinear as well as characterizing the near fields. However, these applications need to use non-invasive sensors. Some optical techniques, initially developed for fluid mechanics, have been adapted to the field of acoustics in recent years. This book summarizes 15 years of research in this area, highlighting the improvements that have been made, particularly in signal processing, and showing applications for which they have proven to be a carrier of innovation.
This book concerns the presentation of particle velocity measurement for acoustics using lasers, including Laser Doppler Velocimetry (LDV or Anemometry (LDA)) and Particle Imagery Velocimetry (PIV). The objective is first to present the importance of measuring the acoustic velocity, especially when the acoustic equations are nonlinear as well as characterizing the near fields. However, these applications need to use non-invasive sensors. Some optical techniques, initially developed for fluid mechanics, have been adapted to the field of acoustics in recent years. This book summarizes 15 years of research in this area, highlighting the improvements that have been made, particularly in signal processing, and showing applications for which they have proven to be a carrier of innovation.
Table of contents
This book is built to start from elementary and fundamental bases to the first degrees of harmony. It provides many theoretical and technical bases of music, presenting in detail relations between physics and music (harmonics, frequency and time spectrum, dissonance, etc.), physiological relations with human body and education.
In this book, the authors focus on the concrete aspects of IoT (Internet of Things): the daily operation, on the ground, of this domain, including concrete and detailed discussion of the designs, applications and realizations of Secure Connected Things and IoT. As experts in the development of RFID and IoT technologies, the authors offer the reader a highly technical discussion of these topics, including the many approaches (technical, security, safety, ergonomic, economic, normative, regulations, etc.) involved in Secure Connected Objects projects. This book is written both for readers wishing to familiarize themselves with the complex issues surrounding networking objects and for those who design these connective "things".
Subtractive sound synthesis is one of the most widely used techniques in electronic music and in many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation is complex, involving many parameters. It can be enhanced by a variety of effects that give the sound its authenticity, and does not simply imitate musical instruments, but can also transcribe noises present in natural soundscapes or generate entirely synthetic sounds. Synthesizers and Subtractive Sound Synthesis 2 presents practical exercises, ranging from the fundamentals to advanced functionalities. Most of the sound effects applicable to subtractive synthesis are covered: vibrato, phaser, reverb, etc. The final chapters deal with polyphony and arpeggiator-sequences.
Near-field communication (NFC) enables the exchange of information between close devices. The antenna is the indispensable element to transform an electronic device into an NFC system. For both theory and practice, this book presents in detail the design technologies of different antennas. They must meet the NFC ISO 18 092 and 21 481 standards as well as specifications by the NFC Forum for industrial applications, by EMVCo for banking applications and payments, and by CEN for public transport. In a particularly pedagogic way, Antenna Designs for NFC Devices enables designers of communicating object systems and the Internet of Things (IoT) to have access to the mysteries of the design of NFC antennas.
The book has a dual purpose. The first is to expose a general methodology to solve problems of electromagnetism in geometries constituted of angular regions. The second is to bring the solutions of some canonical problems of fundamental importance in modern electromagnetic engineering with the use of the Wiener-Hopf technique. In particular, the general mathematical methodology is very ingenious and original. It is based on sophisticated and attractive procedures exploiting simple and advanced properties of analytical functions. Once the reader has acquired the methodology, they can easily obtain the solution of the canonical problems reported in the book. The book can be appealing also to readers who are not directly interested in the detailed mathematical methodology and/ or in electromagnetics. In fact the same methodology can be extended to acoustics and elasticity problems. Moreover, the proposed practical problems with their solutions constitute a list of reference solutions and can be of interest in engineering production in the field of radio propagations, electromagnetic compatibility and radar technologies.
This book presents a collection of independent mathematical studies, describing the analytical reduction of complex generic problems in the theory of scattering and propagation of electromagnetic waves in the presence of imperfectly conducting objects. Their subjects include: a global method for scattering by a multimode plane; diffraction by an impedance curved wedge; scattering by impedance polygons; advanced properties of spectral functions in frequency and time domains; bianisotropic media and related coupling expressions; and exact and asymptotic reductions of surface radiation integrals. The methods developed here can be qualified as analytical when they lead to exact explicit expressions, or semi-analytical when they drastically reduce the mathematical complexity of studied problems. Therefore, they can be used in mathematical physics and engineering to analyse and model, but also in applied mathematics to calculate the scattered fields in electromagnetism for a low computational cost.
Subtractive sound synthesis has been one of the most widely used techniques in electronic music and for many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation remains complex, involving many parameters. It can be enriched by a variety of effects that give the sound its authenticity. It does not just imitate musical instruments, but can also transcribe noises present in natural soundscapes, or generate entirely synthetic sounds. Synthesizers and Subtractive Synthesis 1 presents the theoretical basis of a sound phenomenon, the different types of synthesis, the components that are required and present in synthesizers, the working environment specific to the study of subtractive synthesis, and the hardware and software available. After reading the various chapters of this book, readers will have a clear vision of the tools and actions required to grasp the world of subtractive sound.