Download Free Acid Gas Injection And Carbon Dioxide Sequestration Book in PDF and EPUB Free Download. You can read online Acid Gas Injection And Carbon Dioxide Sequestration and write the review.

Provides a complete treatment on two of the hottest topics in the energy sector – acid gas injection and carbon dioxide sequestration This book provides the most comprehensive and up-to-date coverage of two techniques that are rapidly increasing in importance and usage in the natural gas and petroleum industry — acid gas injection and carbon dioxide sequestration. The author, a well-known and respected authority on both processes, presents the theory of the technology, then discusses practical applications the engineer working in the field can implement. Both hot-button issues in the industry, these processes will help companies in the energy industry "go green," by creating a safer, cleaner environment. These techniques also create a more efficient and profitable process in the plant, cutting waste and making operations more streamlined. This outstanding new reference includes: Uses of acid gas injection, the method of choice for disposing of small quantities of acid gas Coverage of technologies for working towards a zero-emission process in natural gas production A practical discussion of carbon dioxide sequestration, an emerging new topic, often described as one of the possible solutions for reversing global warming Problems and solutions for students at the graduate level and industry course participants
This is the seventh volume in the series, Advances in Natural Gas Engineering, focusing on carbon dioxide (CO2) capture and sequestration, acid gas injection, and enhanced oil recovery, the "three sisters" of natural gas engineering. This volume includes information for both upstream and downstream operations, including chapters detailing the most cutting-edge techniques in acid gas injection, carbon capture, chemical and thermodynamic models, and much more. Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer in the industry. Advances in Natural Gas Engineering is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today.
This is the sixth volume in a series of books on natural gas engineering, focusing carbon dioxide (CO2) capture and acid gas injection. This volume includes information for both upstream and downstream operations, including chapters on well modeling, carbon capture, chemical and thermodynamic models, and much more. Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most cutting-edge and state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer working with natural gas. There are updates of new technologies in other related areas of natural gas, in addition to the CO2 capture and acid gas injection, including testing, reservoir simulations, and natural gas hydrate formations. Advances in Natural Gas Engineering is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today. Every volume is a must-have for any engineer or library.
Provides a complete treatment on two of the hottest topics in the energy sector – acid gas injection and carbon dioxide sequestration This book provides the most comprehensive and up-to-date coverage of two techniques that are rapidly increasing in importance and usage in the natural gas and petroleum industry — acid gas injection and carbon dioxide sequestration. The author, a well-known and respected authority on both processes, presents the theory of the technology, then discusses practical applications the engineer working in the field can implement. Both hot-button issues in the industry, these processes will help companies in the energy industry "go green," by creating a safer, cleaner environment. These techniques also create a more efficient and profitable process in the plant, cutting waste and making operations more streamlined. This outstanding new reference includes: Uses of acid gas injection, the method of choice for disposing of small quantities of acid gas Coverage of technologies for working towards a zero-emission process in natural gas production A practical discussion of carbon dioxide sequestration, an emerging new topic, often described as one of the possible solutions for reversing global warming Problems and solutions for students at the graduate level and industry course participants
Carbon dioxide sequestration is a technology that is being explored to curb the anthropogenic emission of CO2 into the atmosphere. Carbon dioxide has been implicated in the global climate change and reducing them is a potential solution. The injection of carbon dioxide for enhanced oil recovery (EOR) has the duel benefit of sequestering the CO2 and extending the life of some older fields. Sequestering CO2 and EOR have many shared elements that make them comparable. This volume presents some of the latest information on these processes covering physical properties, operations, design, reservoir engineering, and geochemistry for AGI and the related technologies.
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.
This three-volume series, Advances in Natural Gas Engineering, focuses on the engineering of natural gas and its advancement as an increasingly important energy resource. Sour Gas and Related Technologies is the third volume in this important series. Written by a group of the most well-known and knowledgeable authors on the subject in the world, this volume focuses on one of the hottest topics in natural gas today, sour gas. This is a must for any engineer working in natural gas, the energy field, or process engineering. Sour Gas and Related Technologies includes information about upgrading sour gas and the injection of acid gas as an alternative to sulfur production. There are contributions on both surface and subsurface aspects. Also included in this volume are experimental data for density, viscosity, and water content that are so important for the proper design of projects for handling sour gas. There are descriptions of new technologies for the sour gas business including a new method to process sour gas and an update on a technology for dehydration. This outstanding new reference: Covers the most recent advances in natural gas engineering, in both upstream (reservoir) and downstream (processing) Covers technologies for working towards a zero-emission process in natural gas production Written by a team of the world's most well-known scientists and engineers in the field
Compiled from a conference on this important subject by three of the most well-known and respected editors in the industry, this volume provides some of the latest technologies related to carbon capture, utilization and, storage (CCUS). Of the 36 billon tons of carbon dioxide (CO2) being emitted into Earth's atmosphere every year, only 40 million tons are able to be captured and stored. This is just a fraction of what needs to be captured, if this technology is going to make any headway in the global march toward reversing, or at least reducing, climate change. CO2 capture and storage has long been touted as one of the leading technologies for reducing global carbon emissions, and, even though it is being used effectively now, it is still an emerging technology that is constantly changing. This volume, a collection of papers presented during the Cutting-Edge Technology for Carbon Capture, Utilization, and Storage (CETCCUS), held in Clermont-Ferrand, France in the fall of 2017, is dedicated to these technologies that surround CO2 capture. Written by some of the most well-known engineers and scientists in the world on this topic, the editors, also globally known, have chosen the most important and cutting-edge papers that address these issues to present in this groundbreaking new volume, which follows their industry-leading series, Advances in Natural Gas Engineering, a seven-volume series also available from Wiley-Scrivener. With the ratification of the Paris Agreement, many countries are now committing to making real progress toward reducing carbon emissions, and this technology is, as has been discussed for years, one of the most important technologies for doing that. This volume is a must-have for any engineer or scientist working in this field.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.