Download Free Accurate Numerical Algorithms Book in PDF and EPUB Free Download. You can read online Accurate Numerical Algorithms and write the review.

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
This book explains how precise numerical analysis is constructed with C++. Included is a CD-ROM which contains executable Windows 95 programs for the PC and which demonstrates how these programs can be used to solvetypical problems of elementary numerical analysis with precision. The book also provides exercises which illustrate points from the text and references for the methods presented.
This book presents multiprecision algorithms used in number theory and elsewhere, such as extrapolation, numerical integration, numerical summation (including multiple zeta values and the Riemann-Siegel formula), evaluation and speed of convergence of continued fractions, Euler products and Euler sums, inverse Mellin transforms, and complex L L-functions. For each task, many algorithms are presented, such as Gaussian and doubly-exponential integration, Euler-MacLaurin, Abel-Plana, Lagrange, and Monien summation. Each algorithm is given in detail, together with a complete implementation in the free Pari/GP system. These implementations serve both to make even more precise the inner workings of the algorithms, and to gently introduce advanced features of the Pari/GP language. This book will be appreciated by anyone interested in number theory, specifically in practical implementations, computer experiments and numerical algorithms that can be scaled to produce thousands of digits of accuracy.
MATLAB is an interactive system for numerical computation that is widely used for teaching and research in industry and academia. It provides a modern programming language and problem solving environment, with powerful data structures, customizable graphics, and easy-to-use editing and debugging tools. This third edition of MATLAB Guide completely revises and updates the best-selling second edition and is more than 30 percent longer. The book remains a lively, concise introduction to the most popular and important features of MATLAB and the Symbolic Math Toolbox. Key features are a tutorial in Chapter 1 that gives a hands-on overview of MATLAB; a thorough treatment of MATLAB mathematics, including the linear algebra and numerical analysis functions and the differential equation solvers; and a web page at http://www.siam.org/books/ot150 that provides example program files, updates, and links to MATLAB resources. The new edition contains color figures throughout; includes pithy discussions of related topics in new ?Asides" boxes that augment the text; has new chapters on the Parallel Computing Toolbox, object-oriented programming, graphs, and large data sets; covers important new MATLAB data types such as categorical arrays, string arrays, tall arrays, tables, and timetables; contains more on MATLAB workflow, including the Live Editor and unit tests; and fully reflects major updates to the MATLAB graphics system. This book is suitable for both beginners and more experienced users, including students, researchers, and practitioners.
Numerical Analysis with Algorithms and Programming is the first comprehensive textbook to provide detailed coverage of numerical methods, their algorithms, and corresponding computer programs. It presents many techniques for the efficient numerical solution of problems in science and engineering. Along with numerous worked-out examples, end-of-chapter exercises, and Mathematica® programs, the book includes the standard algorithms for numerical computation: Root finding for nonlinear equations Interpolation and approximation of functions by simpler computational building blocks, such as polynomials and splines The solution of systems of linear equations and triangularization Approximation of functions and least square approximation Numerical differentiation and divided differences Numerical quadrature and integration Numerical solutions of ordinary differential equations (ODEs) and boundary value problems Numerical solution of partial differential equations (PDEs) The text develops students’ understanding of the construction of numerical algorithms and the applicability of the methods. By thoroughly studying the algorithms, students will discover how various methods provide accuracy, efficiency, scalability, and stability for large-scale systems.
Mathematics of Computing -- Numerical Analysis.
This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.
An introduction to numerical analysis combining rigour with practical applications, and providing numerous exercises plus solutions.