Download Free Accelerating And Vortex Laser Beams Book in PDF and EPUB Free Download. You can read online Accelerating And Vortex Laser Beams and write the review.

This book gives insight into the theoretical backgrounds of optical vortices and their propagation in free space and simple optical systems. The author’s theoretical analysis allows full comprehension of recent results and allows a bridge between the mentioned topics. For example, there is a solution for an accelerating beam propagating along an almost half-circle, obtained from a solution for an asymmetric vortex Bessel mode. And vice versa, there is a solution for an optical vortex with accelerating focusing, obtained from a solution for a two-dimensional accelerating Pearcey beam. The book is intended for graduate and postgraduate students studying optics or wave physics.
This book deals with theoretical bases of the modern optics division concerned with coherent light fields with singularities characterized by phase uncertainty. Singular light fields include laser vortex beams or beams that carry orbital angular momentum. Laser vortex beams that have been introduced in optics in recent years are discussed in detail. Among them, of special notice are families of asymmetric laser vortex beams that, while being devoid of radial symmetry, remain unchanged upon propagation. What makes the laser vortex beams especially interesting is the ability to preserve their structure while propagating in a scattering medium or through a turbulent atmosphere. The orbital angular momentum is an extra degree of freedom of laser vortices because beams with different topological charge can be utilized as independent channels for data transmission in wireless communications. Laser vortex beams are generated from conventional Gaussian beams using liquid crystal light modulators, which are now readily available at any optical laboratory. Provide a framework for the comparative analysis of the efficiency of different vortex beams for micromanipulation. Includes detailed illustrations, enabling the vortex structure to be easily understood even by non-experts. Presents detailed descriptions of more than a dozen most popular types of vortex laser beams. Explores how optical vortices have been used in many practical applications including conventional and quantum wireless communications, micromanipulation, optical measurements with super-resolution, spiral interferometry, microscopy, and atom cooling. Presents in a systematic and detailed form many analytical and numerical results for the propagation vortex optical beams (chiefly in the linear propagation regime).
This book gives insight into the theoretical backgrounds of optical vortices and their propagation in free space and simple optical systems. The author’s theoretical analysis allows full comprehension of recent results and allows a bridge between the mentioned topics. For example, there is a solution for an accelerating beam propagating along an almost half-circle, obtained from a solution for an asymmetric vortex Bessel mode. And vice versa, there is a solution for an optical vortex with accelerating focusing, obtained from a solution for a two-dimensional accelerating Pearcey beam. The book is intended for graduate and postgraduate students studying optics or wave physics.
This book focuses on optical vortices, including beams carrying orbital angular momentum and vector beams. It presents an overview of, and the latest research on this novel type of optical beam, which is a hot topic in the domain of modern optics, especially in optical communication and beam manipulation. Summarizing the fundamentals of optical vortices, it discusses their characterization and propagation, and focuses on the generation of vortices such as vortex-arrays, and the detection of vortices and their orbital angular momentum state. It also comprehensively examines the adaptive compensation systems, as well as vector beams and polarization vortices with anisotropic polarization distributions. Further it provides a detailed description of perfect vortices with beam diameters independent of the angular momentum. This book is intended for researchers, engineers and graduate students working in the field of optics and laser beam applications.
An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.
This book is devoted to the consideration of unusual laser beams - vortex or singular beams. It contains many numerical examples, which clearly show how the phase of optical vortices changes during propagation in free space, and that the topological charge is preserved. Topological Charge of Optical Vortices shows that the topological charge of an optical vortex is equal to the number of screw dislocations or the number of phase singularities in the beam cross-section. A single approach is used for the entire book: based on M. Berry's formula. It is shown that phase singularities during beam propagation can be displaced to infinity at a speed greater than the speed of light. The uniqueness of the book is that the calculation of the topological charge for scalar light fields is extended to vector fields and is used to calculate the Poincare-Hopf singularity index for vector fields with inhomogeneous linear polarization with V-points and for the singularity index of vector fields with inhomogeneous elliptical polarization with C-points and C- lines. The book is written for opticians, and graduate students interested in an interesting section of optics - singular optics. It will also be of interest to scientists and researchers who are interested in modern optics. In order to understand the content of the book, it is enough to know paraxial optics (Fourier optics) and be able to calculate integrals.
Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.
Vortex laser beams are a technology that has revolutionised applications in micro- and nano-manipulation, micro-fabrication and super-resolution microscopy, and is now heralding advances in quantum communication. In order to service these, and emergent applications, the ability to generate powerful vortex laser beams with user-controlled spatial and wavefront properties, and importantly wavelength, is required. In this chapter, we discuss methods of generating vortex laser beams using both external beam conversion methods, and directly from a laser resonator. We then examine the wavelength conversion of vortex laser beams through non-linear processes of stimulated Raman scattering (SRS), sum-frequency generation (SFG), second harmonic generation (SHG) and optical parametric oscillation. We reveal that under different types of non-linear wavelength conversion, the spatial and wavefront properties of the vortex modes change, and in some cases, the spatial profile also evolve under propagation. We present a theoretical model which explains these dynamics, through decomposition of the vortex mode into constituent Hermite-Gaussian modes of the laser resonator.