Download Free Accelerating And Vortex Laser Beams Book in PDF and EPUB Free Download. You can read online Accelerating And Vortex Laser Beams and write the review.

This book gives insight into the theoretical backgrounds of optical vortices and their propagation in free space and simple optical systems. The author’s theoretical analysis allows full comprehension of recent results and allows a bridge between the mentioned topics. For example, there is a solution for an accelerating beam propagating along an almost half-circle, obtained from a solution for an asymmetric vortex Bessel mode. And vice versa, there is a solution for an optical vortex with accelerating focusing, obtained from a solution for a two-dimensional accelerating Pearcey beam. The book is intended for graduate and postgraduate students studying optics or wave physics.
This book gives insight into the theoretical backgrounds of optical vortices and their propagation in free space and simple optical systems. The author’s theoretical analysis allows full comprehension of recent results and allows a bridge between the mentioned topics. For example, there is a solution for an accelerating beam propagating along an almost half-circle, obtained from a solution for an asymmetric vortex Bessel mode. And vice versa, there is a solution for an optical vortex with accelerating focusing, obtained from a solution for a two-dimensional accelerating Pearcey beam. The book is intended for graduate and postgraduate students studying optics or wave physics.
This book deals with theoretical bases of the modern optics division concerned with coherent light fields with singularities characterized by phase uncertainty. Singular light fields include laser vortex beams or beams that carry orbital angular momentum. Laser vortex beams that have been introduced in optics in recent years are discussed in detail. Among them, of special notice are families of asymmetric laser vortex beams that, while being devoid of radial symmetry, remain unchanged upon propagation. What makes the laser vortex beams especially interesting is the ability to preserve their structure while propagating in a scattering medium or through a turbulent atmosphere. The orbital angular momentum is an extra degree of freedom of laser vortices because beams with different topological charge can be utilized as independent channels for data transmission in wireless communications. Laser vortex beams are generated from conventional Gaussian beams using liquid crystal light modulators, which are now readily available at any optical laboratory. Provide a framework for the comparative analysis of the efficiency of different vortex beams for micromanipulation. Includes detailed illustrations, enabling the vortex structure to be easily understood even by non-experts. Presents detailed descriptions of more than a dozen most popular types of vortex laser beams. Explores how optical vortices have been used in many practical applications including conventional and quantum wireless communications, micromanipulation, optical measurements with super-resolution, spiral interferometry, microscopy, and atom cooling. Presents in a systematic and detailed form many analytical and numerical results for the propagation vortex optical beams (chiefly in the linear propagation regime).
This book deals with theoretical bases of the modern optics division concerned with coherent light fields with singularities characterized by phase uncertainty. Singular light fields include laser vortex beams or beams that carry orbital angular momentum. Laser vortex beams that have been introduced in optics in recent years are discussed in detail. Among them, of special notice are families of asymmetric laser vortex beams that, while being devoid of radial symmetry, remain unchanged upon propagation. What makes the laser vortex beams especially interesting is the ability to preserve their structure while propagating in a scattering medium or through a turbulent atmosphere. The orbital angular momentum is an extra degree of freedom of laser vortices because beams with different topological charge can be utilized as independent channels for data transmission in wireless communications. Laser vortex beams are generated from conventional Gaussian beams using liquid crystal light modulators, which are now readily available at any optical laboratory. Provide a framework for the comparative analysis of the efficiency of different vortex beams for micromanipulation. Includes detailed illustrations, enabling the vortex structure to be easily understood even by non-experts. Presents detailed descriptions of more than a dozen most popular types of vortex laser beams. Explores how optical vortices have been used in many practical applications including conventional and quantum wireless communications, micromanipulation, optical measurements with super-resolution, spiral interferometry, microscopy, and atom cooling. Presents in a systematic and detailed form many analytical and numerical results for the propagation vortex optical beams (chiefly in the linear propagation regime).
Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.
This book deals with applications in several areas of science and technology that make use of light which carries orbital angular momentum. In most practical scenarios, the angular momentum can be decomposed into two independent contributions: the spin angular momentum and the orbital angular momentum. The orbital contribution affords a fundamentally new degree of freedom, with fascinating and wide-spread applications. Unlike spin angular momentum, which is associated with the polarization of light, the orbital angular momentum arises as a consequence of the spatial distribution of the intensity and phase of an optical field, even down to the single photon limit. Researchers have begun to appreciate its implications for our understanding of the ways in which light and matter can interact, and its practical potential in different areas of science and technology.
This invaluable second edition provides more in-depth discussions and examples in various chapters. Based largely on the authors' own in-class lectures as well as research in the area, the comprehensive textbook serves two purposes. The first introduces some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on Fourier optics. The second presents the essentials of acousto-optics and electro-optics, and provides the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®.
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
Addressed mainly to physicist and chemical physicist, this textbook is the result of a broad compilation of current knowledge on analytical properties of Airy functions. In particular, the calculus implying the Airy functions is developed with care. In the latter chapters, examples are given to succinctly illustrate the use of Airy functions in classical and quantum physics. The physicist, for instance in fluid mechanics, can find what he is looking for, in the references for works of molecular physics or in physics of surfaces, and vice versa.The knowledge on Airy functions is frequently reviewed. The reason may be found in the need to express a physical phenomenon in terms of an effective and comprehensive analytical form for the whole scientific community./a
Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser.One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and scientific applications. Recently, significant progress has beenmade in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation highpower lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.