Download Free Ac Electrokinetics Book in PDF and EPUB Free Download. You can read online Ac Electrokinetics and write the review.

Interfacial Electtrokinetics and Electrophoresis presents theoretical models and experimental procedures for the analysis of electrokinetic phenomena. It discusses the physics and chemistry of solid/liquid, liquid/liquid, and gas/liquid interfaces, and offers applications for the printing, environmental, pharmaceutical and biomedical industries.
Biologists, physicists and engineers are working together to make ever-smaller devices capable of studying the properties of tiny biological particles. Using nano-electrodes, encapsulated in a device with dimensions of a few hundred millionths of a metre, it is now possible to manipulate and trap single nano-scale biological particles such as a virus. The precisely controlled electric fields generated within the device can be used to trap single particles in field-cages or separate different viruses from each other, for example. This book is an introduction to the science behind the new technology, and explains how the electric field interacts with the particles. It describes how these micro-systems are manufactured and how they are used to study the electrical properties of the particles.
Covering all aspects of transport phenomena on the nano- and micro-scale, this encyclopedia features over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas. Coverage includes electrical double-layers, optofluidics, DNC lab-on-a-chip, nanosensors, and more.
Among the most promising techniques to handle small objects at the micrometer scale are those that employ electrical forces, which have the advantages of voltage-based control and dominance over other forces. The book provides a state-of-the-art knowledge on both theoretical and applied aspects of the electrical manipulation of colloidal particles and fluids in microsystems and covers the following topics: dielectrophoresis, electrowetting, electrohydrodynamics in microsystems, and electrokinetics of fluids and particles. The book is addressed to doctoral students, young or senior researchers, chemical engineers and/or biotechnologists with an interest in microfluidics, lab-on-chip or MEMS.
Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.
Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the
This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
This book presents a balance of theoretical considerations and practical problem solving of electrochemical impedance spectroscopy. This book incorporates the results of the last two decades of research on the theories and applications of impedance spectroscopy, including more detailed reviews of the impedance methods applications in industrial colloids, biomedical sensors and devices, and supercapacitive polymeric films. The book covers all of the topics needed to help readers quickly grasp how to apply their knowledge of impedance spectroscopy methods to their own research problems. It also helps the reader identify whether impedance spectroscopy may be an appropriate method for their particular research problem. This includes understanding how to correctly make impedance measurements, interpret the results, compare results with expected previously published results form similar chemical systems, and use correct mathematical formulas to verify the accuracy of the data. Unique features of the book include theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain, review of impedance instrumentation, best measurement methods for particular systems and alerts to potential sources of errors, equations and circuit diagrams for the most widely used impedance models and applications, figures depicting impedance spectra of typical materials and devices, extensive references to the scientific literature for more information on particular topics and current research, and a review of related techniques and impedance spectroscopy modifications.
A new, definitive perspective of electrokinetic and colloid transport processes Responding to renewed interest in the subject of electrokinetics, Electrokinetic and Colloid Transport Phenomena is a timely overview of the latest research and applications in this field for both the beginner and the professional. An outgrowth of an earlier text (by coauthor Jacob Masliyah), this self-contained reference provides an up-to-date summary of the literature on electrokinetic and colloid transport phenomena as well as direct pedagogical insight into the development of the subject over the past several decades. A distinct departure from standard colloid science monographs, Electrokinetic and Colloid Transport Phenomena presents the most salient features of the theory in a simple and direct manner, allowing the book to serve as a stepping-stone for further learning and study. In addition, the book uniquely discusses numerical simulation of electrokinetic problems and demonstrates the use of commercial finite element software for solving these multiphysics problems. Among the topics covered are: * Mathematical preliminaries * Colloidal systems * Electrostatics and application of electrostatics * Electric double layer * Electroosmosis and streaming potential * Electrophoresis and sedimentation potential * London-Van der Waals forces and the DLVO theory * Coagulation and colloid deposition * Numerical simulation of electrokinetic phenomena * Applications of electrokinetic phenomena Because this thorough reference does not require advanced mathematical knowledge, it enables a graduate or a senior undergraduate student approaching the subject for the first time to easily interpret the theories. On the other hand, the application of relevant mathematical principles and the worked examples are extremely useful to established researchers and professionals involved in a wide range of areas, including electroosmosis, streaming potential, electrophoretic separations, industrial practices involving colloids and complex fluids, environmental remediation, suspensions, and microfluidic systems.