Download Free Absurdities In Modern Physics Book in PDF and EPUB Free Download. You can read online Absurdities In Modern Physics and write the review.

Arun Bala challenges Eurocentric conceptions of history by showing how Chinese, Indian, Arabic, and ancient Egyptian ideas in philosophy, mathematics, cosmology and physics played an indispensable role in making possible the birth of modern science.
The new discoveries in physics during the twentieth century have stimulated intense debate about their relevance to age-old theological questions. Views range from those holding that modern physics provides a surer road to God than traditional religions, to those who say that physics and theology are incommensurable and so do not relate. At the very least, physics has stimulated renewed theological discussions. In this critical introduction to the science-theology debate, Peter E. Hodgson draws on his experience as a physicist to present the results of modern physics and the theological implications. Written for those with little or no scientific background, Hodgson describes connections between physics, philosophy and theology and then explains Newtonian physics and Victorian physics, the theories of relativity, astronomy and quantum mechanics, and distinguishes the actual results of modern physics from speculations. The connections with theology are explored throughout. The concluding section draws discussions together and makes an important new contribution to the debate.
This book is an experiment. Inspired by the bizarre and uncanny, it is an attempt to use science and rationality to lift the veil off the irrational. Its ways are unconventional: weaving along its path one finds UFOs and fairies, quantum mechanics, analytic philosophy, history, mathematics, and depth psychology. The enterprise of constructing a coherent story out of these incommensurable disciplines is exploratory. But if the experiment works, at the end these disparate threads will come together to unveil a startling scenario about the nature of reality. The payoff is handsome: a reason for hope, a boost for the imagination, and the promise of a meaningful future. Yet this book may confront some of your dearest notions about truth and reason. Its conclusions cannot be dismissed lightly, because the evidence this book compiles and the philosophy it leverages are solid in the orthodox, academic sense. ,
"Dear Henry, I think I need to think over what you say. But, you are not focussing on the big issues and the solutions that I propose. I am really saying that Schrodinger is correct and that time is independent of space and that when these two are factored in the whole of modern physics then fits the facts. About light travelling at the speed of infinity, can we take that as a postulate in the book? And then see how the equations of modern physics drop out if that is done? E=Mc DEGREES2 is another postulate as is that Schrodinger is correct. These are the three postulates of new physics."
An award-winning scientist argues that theoretical physics has become too abstract and calls for science to return to the experimental method The recently celebrated discovery of the Higgs boson has captivated the public's imagination with the promise that it can explain the origins of everything in the universe. It's no wonder that the media refers to it grandly as the "God particle." Yet behind closed doors, physicists are admitting that there is much more to this story, and even years of gunning the Large Hadron Collider and herculean number crunching may still not lead to a deep understanding of the laws of nature. In this fascinating and eye-opening account, theoretical physicist Alexander Unzicker and science writer Sheilla Jones offer a polemic. They question whether the large-scale, multinational enterprises actually lead us to the promised land of understanding the universe. The two scientists take us on a tour of contemporary physics and show how a series of highly publicized theories met a dead end. Unzicker and Jones systematically unpack the recent hot theories such as "parallel universes," "string theory," and "inflationary cosmology," and provide an accessible explanation of each. The auhors argue that physics has abandoned its evidence-based roots and shifted to untestable mathematical theories, and they issue a clarion call for the science to return to its experimental foundation.
It is now a century ago that one of the icons of modern physics published some of the most influential scientific papers of all times. With his work on relativity and quantum theory, Albert Einstein has altered the field of physics forever. It should not come as a surprise that looking back at Einstein's work, one needs to rethink the whole scope of physics, before and after his time. This books aims to provide a perspective on the history of modern physics, spanning from the late 19th century up to today. It is not an encyclopaedic work, but it presents the groundbreaking and sometimes provocative main contributions by Einstein as marking the line between 'old' and 'new' physics, and expands on some of the developments and open issues to which they gave rise. This presentation is not meant as a mere celebration of Einstein's work, but as a critical appraisal which provides accurate historical and conceptual information. The contributing authors all have a reputation for working on themes related to Einstein's work and its consequences.Therefore, the collection of papers gives a good representation of what happened in the 100 years after Einstein's landmark Annalen der Physik articles. All people interested in the field of physics, history of science and epistemology could benefit from this book. An effort has been made to make the book attractive not only to scientists, but also to people with a more basic knowledge of mathematics and physics.
This Worldwide List of Alternative Theories and Critics (only avalailable in english language) includes scientists involved in scientific fields. The 2023 issue of this directory includes the scientists found in the Internet. The scientists of the directory are only those involved in physics (natural philosophy). The list includes 9700 names of scientists (doctors or diplome engineers for more than 70%). Their position is shortly presented together with their proposed alternative theory when applicable. There are nearly 3500 authors of such theories, all amazingly very different from one another. The main categories of theories are presented in an other book of Jean de Climont THE ALTERNATIVE THEORIES
From acclaimed science author Jim Baggot, a lively, provocative, and “intellectually gratifying” critique of modern theoretical physics (The Economist). Where does one draw the line between solid science and fairy-tale physics? Jim Baggott argues that there is no observational or experimental evidence for many of the ideas of modern theoretical physics: super-symmetric particles, super strings, the multiverse, the holographic principle, or the anthropic cosmological principle. Unafraid to challenge prominent theorists, Baggott offers engaging portraits of many central figures of modern physics, including Stephen Hawking, Paul Davies, John D. Barrow, Brian Greene, and Leonard Susskind. Informed, comprehensive, and balanced, Farewell to Reality discusses the latest ideas about the nature of physical reality while clearly distinguishing between fact and fantasy, providing essential and entertaining reading for everyone interested in what we know and don’t know about the nature of the universe and reality itself.
THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT In August of 1995, a group of over 70 physicists met at York University for a three-day symposium in honour of Professor Jean-Pierre Vigier. The attendance included theoretical and experimental physicists, mathematicians, astronomers and colleagues concerned with issues in the philosophy of science. The symposium was entitled "The Present Status of the Quantum Theory of Light" in accordance with Professor Vigier's wishes but in fact encompassed many of the areas to which Professor Vigier has contributed over his long and distinguished career. These include stochastic interpretations of quantum mechanics, particle physics, and electromagnetic theory. The papers presented at the symposium have been arranged in this proceedings in the following approximate order: ideas about the nature of light and photons, electrodynamiCS, the formulation and interpretation of quantum mechanics, and aspects of relativity theory. Some of the papers presented deal with alternate interpretations of quantum phenomena in the tradition of Vigier, Bohm et al. These interpretations reject the account given in purely probabilistic terms and which deems individual quantum events to be acausal and not amenable to any analysis in space-time terms. As is well known, Einstein and others also rejected the purely statistical account of quantum mechanics. As stressed by Professor Vigier at the symposium, the current experimental situation now allows for the first time for individual quantum events to be studied, e. g.