Download Free About Mathematics Book in PDF and EPUB Free Download. You can read online About Mathematics and write the review.

'What is a self and how can a self come out of inanimate matter?' This is the riddle that drove Douglas Hofstadter to write this extraordinary book. In order to impart his original and personal view on the core mystery of human existence - our intangible sensation of 'I'-ness - Hofstadter defines the playful yet seemingly paradoxical notion of 'strange loop', and explicates this idea using analogies from many disciplines.
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. "Lucid . . . easily understandable".--Albert Einstein. 301 linecuts.
This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.
Katherine Loop has done the remarkable! She has written a solid math course with a truly Biblical worldview. This course goes way beyond the same old Christian math course that teaches math with a few Scriptures sprinkled in and maybe some church-based word problems. This course truly transforms the way we see math. Katherine makes the argument that math is not a neutral subject as most have come to believe. She carefully lays the foundation of how math points to our Creator, the God of the Bible. The nature of God, His Creation, and even the Gospel itself is seen through the study of math. Katherine does a marvelous job of revealing His Glory in this one-of-a-kind math course. Katherine Loop's Principles of Mathematics Biblical Worldview Curriculum is a first of its kind. It takes math to a whole new level students and parents are going to love. It is a guaranteed faith grower!
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
Numbers surround us. Just try to make it through a day without using any. It's impossible: telephone numbers, calendars, volume settings, shoe sizes, speed limits, weights, street numbers, microwave timers, TV channels, and the list goes on and on. The many advancements and branches of mathematics were developed through the centuries as people encountered problems and relied upon math to solve them. For instance: What timely invention was tampered with by the Caesars and almost perfected by a pope? Why did ten days vanish in September of 1752? How did Queen Victoria shorten the Sunday sermons at chapel? What important invention caused the world to be divided into time zones? What simple math problem caused the Mars Climate Orbiter to burn up in the Martian atmosphere? What common unit of measurement was originally based on the distance from the equator to the North Pole? Does water always boil at 212? Fahrenheit? What do Da Vinci's Last Supper and the Parthenon have in common? Why is a computer glitch called a "bug"? It's amazing how ten simple digits can be used in an endless number of ways to benefit man. The development of these ten digits and their many uses is the fascinating story you hold in your hands: Exploring the World of Mathematics.
Teacher Guide for use with Principles of Mathematics Book 2. Katherine Loop's Principles of Mathematics Book 2 guides students through the core principles of algebra-equipping your student for High School success! Teacher Guide includes daily schedule, student worksheets, quizzes, tests, and answer key.