Download Free Aashto Lrfd Bridge Design Specifications Customary Us Units Book in PDF and EPUB Free Download. You can read online Aashto Lrfd Bridge Design Specifications Customary Us Units and write the review.

"The provisions of these Specifications are intended for the design, evaluation and rehabilitation of both fixed and movable highway bridges. Mechanical, electrical, and special vehicular and pedestrian safety aspects of movable bridges, however, are not covered. Provisions are not included for bridges used solely for railway, rail transit or public utilities. For bridges not fully covered herein, the provisions of these Specifications mat be applied, as augmented with additional design criteria where required. These specifications are not intended to supplant proper training or the exercise of judgment by the Designer, and state only the minimum requirements necessary to provide for public safety. The Owner or the Designer may require the sophistication of design or the quality of materials and construction to be higher than the minimum requirements. The concept of safety through redundancy and ductility, and protection against scour and collision are emphasized. The design provisions of these Specifications employ the Load and Resistance Factor Design, LRFD, methodology. The factors have been developed from the theory of reliability based upon current statistical knowledge of loads and structural performance. Methods of analysis, other than those included in previous Specifications, and the modelling techniques inherent in them are included, and their use is encouraged. The commentary is not intended to provide a complete historical background concerning the development of these, or previous Specifications, nor is it intended to provide a detailed summary of the studies and research data reviewed in formulating the provisions of the Specification. However, references to some of the research data are provided for those who wish to study the background material in depth. The commentary directs attention to other documents that provide suggestions for carrying out the requirements and intent of these Specifications. However, those documents and this commentary are not intended to be a part of these Specifications."--Page1-1.
Developed to comply with the fifth edition of the AASHTO LFRD Bridge Design Specifications [2010]––Simplified LRFD Bridge Design is "How To" use the Specifications book. Most engineering books utilize traditional deductive practices, beginning with in-depth theories and progressing to the application of theories. The inductive method in the book uses alternative approaches, literally teaching backwards. The book introduces topics by presenting specific design examples. Theories can be understood by students because they appear in the text only after specific design examples are presented, establishing the need to know theories. The emphasis of the book is on step-by-step design procedures of highway bridges by the LRFD method, and "How to Use" the AASHTO Specifications to solve design problems. Some of the design examples and practice problems covered include: Load combinations and load factors Strength limit states for superstructure design Design Live Load HL- 93 Un-factored and Factored Design Loads Fatigue Limit State and fatigue life; Service Limit State Number of design lanes Multiple presence factor of live load Dynamic load allowance Distribution of Live Loads per Lane Wind Loads, Earthquake Loads Plastic moment capacity of composite steel-concrete beam LRFR Load Rating Simplified LRFD Bridge Design is a study guide for engineers preparing for the PE examination as well as a classroom text for civil engineering students and a reference for practicing engineers. Eight design examples and three practice problems describe and introduce the use of articles, tables, and figures from the AASHTO LFRD Bridge Design Specifications. Whenever articles, tables, and figures in examples appear throughout the text, AASHTO LRFD specification numbers are also cited, so that users can cross-reference the material.