Download Free A3 Adenosine Receptors From Cell Biology To Pharmacology And Therapeutics Book in PDF and EPUB Free Download. You can read online A3 Adenosine Receptors From Cell Biology To Pharmacology And Therapeutics and write the review.

This book, with its 16 chapters, documents the present state of knowledge of the adenosine A receptor. It covers a wide range of information, including data from 3 studies of theoretical, molecular and cellular pharmacology, signal transduction, integrative physiology, new drug discoveries and clinical applications. It fills an important gap in the literature since no alternative source of such information is currently available. Although the A receptor is increasingly being recognized for 3 its increasing number of biological roles throughout the body and many A receptor 3 ligands have proven useful in elucidating peripheral and central pathologies, many issues remain unresolved. Moreover, research activity in this field continues to grow exponentially, resulting in a constant flow of new information. The chapters in this book cover both basic science and the relevant applications and provide an authoritative account of the current status of the field. They have enabled my goal as editor to make “A Adenosine Receptors from Cell Biology to Pharmacology and 3 Therapeutics” an up to date, scientifically excellent, reference source, attractive to basic and clinical scientists alike, a reality. Detailed understanding of the physico-chemical aspects and molecular biology of the A receptor provides a solid basis for its future development as a target for 3 adenosine-based pharmacotherapies (Chapters 2 and 3).
This book traces the history of adenosine receptor research from molecular biology to medicinal chemistry to behavior, including their implications in disease and potential strategies as therapeutic targets. It provides the reader with a comprehensive overview of the adenosine receptors that includes information on all subtypes - A1, A2A, A2B and A3. Aspects addressed include the most up to date information on their functional distribution in the nervous and peripheral systems, behavioral roles in inflammation, cancer, pain and neurological diseases such as Huntington’s disease, Epilepsy, Parkinson’s disease and Alzheimer’s disease.
Since their discovery approximately 25 years ago, adenosine receptors have now emerged as important novel molecular targets in disease and drug discovery. These proteins play important roles in the entire spectrum of disease from inflammation to immune suppression. Because of their expression on a number of different cell types and in a number of different organ systems they play important roles in specific diseases, including asthma, rheumatoid arthritis, Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, heart disease, stroke, cancer, sepsis, and obesity. As a result of intense investigations into understanding the molecular structures and pharmacology of these proteins, new molecules have been synthesized that have high specificity for these proteins and are now entering clinical trials. These molecules will define the next new classes of drugs for a number of diseases with unmet medical needs.
This is an overview of the fast-moving field of purinergic signalling through adenosine and ATP receptors. - Authors are the leading authorities in their fields - Subject matter is important for understanding tissue protection - Subject matter is of intense interest for new drug development
Epilepsy is a devastating group of neurological disorders characterized by periodic and unpredictable seizure activity in the brain. There is a critical need for new drugs and approaches given than at least one-third of all epilepsy patients are not made free of seizures by existing medications and become "medically refractory". Much of epilepsy research has focused on neuronal therapeutic targets, but current antiepileptic drugs often cause severe cognitive, developmental, and behavioral side effects. Recent findings indicate a critical contribution of astrocytes, star-shaped glial cells in the brain, to neuronal and network excitability and seizure activity. Furthermore, many important cellular and molecular changes occur in astrocytes in epileptic tissue in both humans and animal models of epilepsy. The goal of Astrocytes and Epilepsy is to comprehensively review exciting findings linking changes in astrocytes to functional changes responsible for epilepsy for the first time in book format. These insights into astrocyte contribution to seizure susceptibility indicate that astrocytes may represent an important new therapeutic target in the control of epilepsy. Astrocytes and Epilepsy includes background explanatory text on astrocyte morphology and physiology, epilepsy models and syndromes, and evidence from both human tissue studies and animal models linking functional changes in astrocytes to epilepsy. Beautifully labelled diagrams are presented and relevant figures from the literature are reproduced to elucidate key findings and concepts in this rapidly emerging field. Astrocytes and Epilepsy is written for neuroscientists, epilepsy researchers, astrocyte investigators as well as neurologists and other specialists caring for patients with epilepsy. - Presents the first comprehensive book to synthesize historical and recent research on astrocytes and epilepsy into one coherent volume - Provides a great resource on the field of astrocyte biology and astrocyte-neuron interactions - Details potential therapeutic targets, including chapters on gap junctions, water and potassium channels, glutamate and adenosine metabolism, and inflammation
The book "Pharmacology and Therapeutics" targets every aspect of the mechanisms for the chemical actions of both traditional and novel drugs. This book covers six sections: Molecular Modeling and Bio-molecular Pharmacology, Immunopharmacology, Environmental Pharmacology and Toxicology, Nanotechnology and Chemotherapy, Drugs and Drug Delivery System and Addiction Pharmacology. Each of these sections is interwoven with the theoretical aspects and experimental techniques of physiology, biochemistry, nutrition, cellular and molecular biology, microbiology, immunology, genetics, and pathology. This book will be a significant source to scientists, physicians, health care professionals and students who are interested to explore the effect of chemical agents on human life.
Numerous phenomenal advances have been made towards understanding the role of neurotransmitters in the pathophysiology of neurological disorders, and these have resulted in a large number of novel molecules with the potential to revolutionize the treatment and prevention of such disorders. This book provides a comprehensive and detailed explanation of brain neurotransmitters and their receptors and associated channels. It includes a basic introduction, and also discusses the functions and recent advances and their pharmacology, highlighting the role of various computer aided drug design (CADD) strategies for the development of therapeutic ligands to modulate these receptors/ion channels. Written in an easy-to-read style, it is intended for neuroscience and pharmaceutical students and researchers working in the area of brain neurotransmitters.
This well-established international series examines major areas of basic and clinical research within neuroscience, as well as emerging and promising subfields. This volume concentrates on adenosine receptor science, providing insights useful for actual drug discovery/development in neurology and psychiatry areas. - Expertise of contributors - Subject including practical drug development from basic science, as translational research taste - Structure of contents focusing on two CNS areas for diseases (neurology and psychiatry)
Adenosine Receptors in Neurodegenerative Diseases covers the role of adenosine receptors in brain function, also focusing on related methodologies and perspectives in therapeutics. The book provides an up-to-date overview by the best specialists in the field, helping readers consider the importance of adenosine and expand the global impact and visibility of adenosine research in the CNS field. Chapters include adenosine biology and signaling, gene regulation, control of motor function, and novel adenosine-based therapies in the CNS. It is an ideal resource for researchers, advanced graduate students, clinicians, and industry scientists working in the fields of clinical neuroscience and molecular and cellular neuroscience. - Comprehensive reference that details adenosine receptors in neurodegenerative disorders, with details on brain function and possible therapeutics - Gives insights on how these receptors modulate the neurodegenerative outcomes in different disorders - Edited by two of the leading researchers in the field regarding adenosine role in the brain in aging and neurodegenerative conditions
A major direction in medical research leading to clinical applications targets the regulation of intracellular calcium and the various human diseases associated with an altered homeostasis of this global second messenger. These diseases include, for example: cardiomyopathy, inflammation, brain disorders, diabetes and cancer. In Calcium-Binding Proteins and RAGE: from Structural Basics to Clinical Applications,expert researchers in the field detail many of the methods which are now commonly used to study calcium binding proteins. These methods and techniques, such as calcium-measurements, screening methods, clinical chemistry, and therapy, are generally applicable to many other areas of basic and medical research as well as to diagnostics. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical,Calcium-Binding Proteins and RAGE: from Structural Basics to Clinical Applications underlines the diagnostic and clinical importance of this family of proteins in human diseases and as drug targets.