Download Free A Variational Problem In The Theory Of Plasticity Book in PDF and EPUB Free Download. You can read online A Variational Problem In The Theory Of Plasticity and write the review.

Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
The work dwells on certain variational principles of the theory of plasticity of Hencky with the Von Mises condition of plasticity without hardening, and on their application. (Author).
This study of the problem of the equilibrium of a perfectly plastic body under specific conditions employs tools and methods that can be applied to other areas, including the mechanics of fracture and certain optimal control problems. The three-part approach begins with an exploration of variational problems in plasticity theory, covering function spaces, concepts and results of convex analysis, formulation and duality of variational problems, limit analysis, and relaxation of the boundary condition. The second part examines the solution of variational problems in the finite-energy spaces; its topics include relaxation of the strain problem, duality between the generalized stresses and strains, and the existence of solutions to the generalized strain problem. The third and final part addresses asymptotic problems and problems in the theory of plates. The text includes a substantial bibliography and a new Preface and appendix by the author.
This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: “The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory.” (ZAMM, 2002) “In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field.” (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)
First published in 1950, this important and classic book presents a mathematical theory of plastic materials, written by one of the leading exponents.