Download Free A Users Guide To Ligand Book in PDF and EPUB Free Download. You can read online A Users Guide To Ligand and write the review.

Energetische Wechselbeziehungen zwischen Ligand und Rezeptor sind besonders bei der Wechselwirkung kleiner Moleküle mit größeren unter Bildung komplexer Makromoleküle von Bedeutung, welche eine essentielle Rolle in Chemie, Biochemie, Biophysik, Pharmakologie und vielen anderen Gebieten spielen. Hier werden die thermodynamischen Ansätze experimentell und theoretisch erläutert - mit vielen Illustrationen zur Erklärung der Ligand-Bindungskonzepte.
Brain Receptor Methodologies, Part A, General Methods and Concepts: Amines and Acetylcholine provides information pertinent to neurotransmitter and neuromodulator receptors in brain. This book explores the methodologies that can used to address several basic and clinical problems. Organized into two sections encompassing 18 chapters, this book starts with an overview of the receptor concept, which can be validated from indirect evidence obtained in studies of the quantitative aspects of drug antagonism. This text then examines the radioligand–receptor binding interactions. Other chapters consider immunocytochemistry, which has a primary role in determining the precise distribution of regulatory peptides to neural and endocrine elements of the diffuse neuroendocrine system. The final chapter discusses the use of the radioligand binding procedure for the study of muscarinic receptors, which has expanded the area of muscarinic receptor pharmacology. Biochemists, pharmacologists, physiologists, and researchers engaged in the fields of neurobiology and neuroscience will find this book extremely useful.
The purpose of Ligand Efficiency Indices for Drug Discovery: Towards an Atlas-Guided Paradigm is to introduce in a concise and self-contained form the concepts, ideas, applications and examples of efficiency-driven drug discovery to the biomedical community at large. The book emphasizes the use of 'new variables' and more objective numerical methods to drive drug discovery in an encompassing way. These 'new variables' are based on Ligand Efficiency Indices (LEIs) formulated in a way that permits mapping Chemico-Biological Space (CBS) in an Atlas-like representation. It provides a practical and timely discussion of the concepts, ideas, applications and examples of efficiency-driven drug discovery. This book emphasizes the use of a graphical representation and objective numerical methods to drive drug discovery more effectively. It presents the definition of LEIs and the corresponding efficiency planes within an atlas-like environment to provide a robust graphical and numerical framework for medicinal chemists and drug-discoverers. - Provides a practical and timely discussion of the concepts, ideas, applications and examples of efficiency-driven drug discovery - Emphasizes the use of 'new variables' and more objective numerical methods to drive quicker and more effective drug discovery - Presents the definition of Ligand Efficiency Indices (LEIs) and the corresponding efficiency planes as key concepts to provide a graphical and numerical framework
Fragmentation: Toward Accurate Calculations on Complex Molecular Systems introduces the reader to the broad array of fragmentation and embedding methods that are currently available or under development to facilitate accurate calculations on large, complex systems such as proteins, polymers, liquids and nanoparticles. These methods work by subdividing a system into subunits, called fragments or subsystems or domains. Calculations are performed on each fragment and then the results are combined to predict properties for the whole system. Topics covered include: Fragmentation methods Embedding methods Explicitly correlated local electron correlation methods Fragment molecular orbital method Methods for treating large molecules This book is aimed at academic researchers who are interested in computational chemistry, computational biology, computational materials science and related fields, as well as graduate students in these fields.