Download Free A Users Guide To Algebraic Topology Book in PDF and EPUB Free Download. You can read online A Users Guide To Algebraic Topology and write the review.

This book arose from courses taught by the authors, and is designed for both instructional and reference use during and after a first course in algebraic topology. It is a handbook for users who want to calculate, but whose main interests are in applications using the current literature, rather than in developing the theory. Typical areas of applications are differential geometry and theoretical physics. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. We show how to calculate homotopy groups, homology groups and cohomology rings of most of the major theories, exact homotopy sequences of fibrations, some important spectral sequences, and all the obstructions that we can compute from these. Our approach is to mix illustrative examples with those proofs that actually develop transferable calculational aids. We give extensive appendices with notes on background material, extensive tables of data, and a thorough index. Audience: Graduate students and professionals in mathematics and physics.
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize :fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them.
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
In this volume the authors seek to illustrate how methods of differential geometry find application in the study of the topology of differential manifolds. Prerequisites are few since the authors take pains to set out the theory of differential forms and the algebra required. The reader is introduced to De Rham cohomology, and explicit and detailed calculations are present as examples. Topics covered include Mayer-Vietoris exact sequences, relative cohomology, Pioncare duality and Lefschetz's theorem. This book will be suitable for graduate students taking courses in algebraic topology and in differential topology. Mathematicians studying relativity and mathematical physics will find this an invaluable introduction to the techniques of differential geometry.
From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews
With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.
The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.