Download Free A Typology For Analyzing Digital Curricula In Mathematics Education Book in PDF and EPUB Free Download. You can read online A Typology For Analyzing Digital Curricula In Mathematics Education and write the review.

Digital content is increasingly present in U.S. K-12 classrooms, with a current push by federal officials to increase the rate at which digital textbooks are adopted. While some teachers' use of electronic resources involves locating activities and lessons from various internet sites, textbook and educational software companies have begun to develop comprehensive programs that can supplement if not fully replace traditional paper textbooks. Digital platforms can be transformative, with possibilities for frequent updating, access to multimedia resources, connection to virtual communities, lower production and distribution costs, and customized instruction. However, there have been no attempts to analyze specific programs in mathematics education with respect to these and other features, a gap we seek to address. In this article, we developed and applied a framework to analyze a representative sample of digital curriculum programs in order to help educators better understand characteristics of these materials. We documented two distinct curriculum types, individualized learning programs and digitized versions of traditional textbooks. While the programs offered some of the features identified as transformative, particularly with respect to assessment systems that rapidly and visually report student performance, there were many features that did not take full advantage of the digital medium.
The mathematics curriculum – what mathematics is taught, to whom it is taught, and when it is taught – is the bedrock to understanding what mathematics students can, could, and should learn. Today’s digital technology influences the mathematics curriculum in two quite different ways. One influence is on the delivery of mathematics through hardware such as desktops, laptops, and tablets. Another influence is on the doing of mathematics using software available on this hardware, but also available on the internet, calculators, or smart phones. These developments, rapidly increasing in their availability and decreasing in their cost, raise fundamental questions regarding a mathematics curriculum that has traditionally been focused on paper-and-pencil work and taught in many places as a set of rules to be practiced and learned. This volume presents the talks given at a conference held in 2014 at the University of Chicago, sponsored by the Center for the Study of Mathematics Curriculum. The speakers – experts from around the world and inside the USA – were asked to discuss one or more of the following topics: • changes in the nature and creation of curricular materials available to students • transformations in how students learn and how they demonstrate their learning • rethinking the role of the teacher and how students and teachers interact within a classroom and across distances from each other The result is a set of articles that are interesting and captivating, and challenge us to examine how the learning of mathematics can and should be affected by today’s technology.
This book focuses on issues related to mathematics teaching and learning resources, including mathematics textbooks, teacher guides, student learning and assessment materials, and online resources. The book highlights various theoretical and methodological approaches used to study teaching and learning resources, and addresses the areas of resources, teachers, and students at an international level. As for the resources, the book examines the role textbooks and other curricular or learning resources play in mathematics teaching, learning, and assessment. It asks questions such as: Could we consider different types of textbooks and roles they play in teaching and learning? How does the digitalization of information and communication affect these roles? What are defining features of e-textbooks, and how could we characterize the differences between the traditional textbooks and e-textbooks? As for the teachers, the book discusses the relationships between teachers’ individual and collective resources, and the way in which we could model such relationships. Specific questions addressed are: What is the role of teachers in developing textbooks and other teaching and learning materials? What are the relationships between resource designers and users? What are the consequences of these changing roles and relationships for the teaching of mathematics, and for teacher knowledge and professional development? As for the students, the book explores how students, as well as their teachers, interact through resources. It raises and addresses questions such as: What are the effects of modern ICT (particularly internet) on students’ use and the design of resources? How do changing patterns of use and design affect student behaviour, learning, and relationships to the subject of mathematics?
The wide availability of digital educational resources for mathematics teaching and learning is indisputable, with some notable genres of technologies having evolved, such as graphing calculators, dynamic graphing, dynamic geometry and data visualization tools. But what does this mean for teachers of mathematics, and how do their roles evolve within this digital landscape? This essential book offers an international perspective to help bridge theory and practice, including coverage of networking theories, curriculum design, task implementation, online resources and assessment. Mathematics Education in the Digital Age details the impacts this digital age has, and will continue to have, on the parallel aspects of learning and teaching mathematics within formal education systems and settings. Written by a group of international authors, the chapters address the following themes: Mathematics teacher education and professional development Mathematics curriculum development and task design The assessment of mathematics Theoretical perspectives and methodologies/approaches for researching mathematics education in the digital age This book highlights not only the complex nature of the field, but also the advancements in theoretical and practical knowledge that is enabling the mathematics education community to continue to learn in this increasingly digital age. It is an essential read for all mathematics teacher educators and master teachers.
This third edition of the Handbook of International Research in Mathematics Education provides a comprehensive overview of the most recent theoretical and practical developments in the field of mathematics education. Authored by an array of internationally recognized scholars and edited by Lyn English and David Kirshner, this collection brings together overviews and advances in mathematics education research spanning established and emerging topics, diverse workplace and school environments, and globally representative research priorities. New perspectives are presented on a range of critical topics including embodied learning, the theory-practice divide, new developments in the early years, educating future mathematics education professors, problem solving in a 21st century curriculum, culture and mathematics learning, complex systems, critical analysis of design-based research, multimodal technologies, and e-textbooks. Comprised of 12 revised and 17 new chapters, this edition extends the Handbook’s original themes for international research in mathematics education and remains in the process a definitive resource for the field.
This book compiles and synthesizes existing research on teachers’ use of mathematics curriculum materials and the impact of curriculum materials on teaching and teachers, with a particular emphasis on – but not restricted to – those materials developed in the 1990s in response to the NCTM’s Principles and Standards for School Mathematics. Despite the substantial amount of curriculum development activity over the last 15 years and growing scholarly interest in their use, the book represents the first compilation of research on teachers and mathematics curriculum materials and the first volume with this focus in any content area in several decades.
The digital age provides ample opportunities for enhanced learning experiences for students; however, it can also present challenges for educators who must adapt to and implement new technologies in the classroom. The Handbook of Research on Transforming Mathematics Teacher Education in the Digital Age is a critical reference source featuring the latest research on the development of educators’ knowledge for the integration of technologies to improve classroom instruction. Investigating emerging pedagogies for preservice and in-service teachers, this publication is ideal for professionals, researchers, and educational designers interested in the implementation of technology in the mathematics classroom.
This volume focuses on research related to mathematics curriculum. But rather than focusing on results of research, it focuses on lessons learned about conducting research on curriculum, whether about design and development, analysis of curriculum in the form of official standards or textbook instantiations, teacher intentions related to curriculum implementation, or actual classroom enactment. For scholars interested in curriculum research, the volume offers lessons about conducting curriculum research that have been learned by others engaged in such work, including frameworks, tools, and techniques, as well as challenges and issues faced, with solutions to address them. Sharing lessons from authors of different countries strengthens the broader mathematics research community and provides insights that can help researchers make important strides forward in research on mathematics curriculum.
This edited volume will help educators better analyze methodological and practical tools designed to aid classroom instruction. It features papers that explore the need to create a system in order to fully meet the uncertainties and developments of modern educational phenomena. These have emerged due to the abundance of digital resources and new forms of collective work. The collected papers offer new perspectives to a rising field of research known as the Documentational Approach to Didactics. This framework was first created by the editors of this book. It seeks to develop a deeper understanding of mathematics teaching expertise. Readers will gain insight into how to meet the theoretical questions brought about by digitalization. These include: how to analyze teachers’ work when they prepare for their teaching, how to conceptualize the relationships between individual and collective work, and how to follow the related processes over the long term. The contributors also provide a comparative view in terms of contrasting selected phenomena across different educational cultures and education systems. For instance, they consider how differences in curriculum resources are available to teachers and how teachers make use of them to shape instruction. Coverage also considers the extent to which teachers make use of additional material, particularly those available through the global marketplace on the Internet. This book builds on works from the Re(s)sources 2018 Conference, Understanding teachers’ work through their interactions with resources for teaching, held in Lyon, France.