Download Free A Theoretical Approach To Inorganic Chemistry Book in PDF and EPUB Free Download. You can read online A Theoretical Approach To Inorganic Chemistry and write the review.

Dr. Alan Williams has acquired a considerable experience in work with transition metal complexes at the Universities of Cambridge and Geneva. In this book he has tried to avoid the variety of ephemeral and often contradictory rationalisations encountered in this field, and has made a careful comparison of modern opinions about chemical bond ing. In my opinion this effort is fruitful for all students and active scientists in the field of inorganic chemistry. The distant relations to group theory, atomic spectroscopy and epistemology are brought into daylight when Dr. Williams critically and pedagogic ally compares quantum chemical models such as molecular orbital theory, the more specific L. C. A. O. description and related "ligand field" theory, the valence bond treat ment (which has conserved great utility in antiferromagnetic systems with long inter nuclear distances), and discusses interesting, but not too well-defined concepts such as electronegativity (also derived from electron transfer spectra), hybridisation, and oxid ation numbers. The interdisciplinary approach of the book shows up in the careful consideration given to many experimental techniques such as vibrational (infra-red and Raman), elec tronic (visible and ultraviolet), Mossbauer, magnetic resonance, and photoelectron spectra, with data for gaseous and solid samples as well as selected facts about solution chemistry. The book could not have been written a few years ago, and is likely to re main a highly informative survey of modern inorganic chemistry and chemical physicS. Geneva, January 1979 C. K.
This is one of the few books available that uses unifying theoretical concepts to present inorganic chemistry at the advanced undergraduate and graduate levels--most texts are organized around the periodic table, while this one is structured after bonding models, structure types, and reaction patterns. But the real strength of Porterfield's Second Edition is its clear presentation of ample background description, especially in recent areas of development such as cluster molecules, industrial catalysis, and bio-inorganic chemistry. This information will enable students to understand most current journals, empowering them to stay abreast of the latest advances in the field. Specific improvements of the Second Edition include new chapters on materials-science applications and bioinorganic chemistry, an extended discussion of transition-metal applications (including cuprate superconductors), and extended Tanabe-Sugano diagrams. - Extended treatment of inorganic materials science--ceramics, refractories, magnetic materials, superconductors--in the context of solid-state chemistry - Extended coverage of biological systems and their chemical and physiological consequences--02 metabolism, N2 fixation, muscle action, iron storage, cisplatin and nucleic acid structural probes, and photosynthesis - Unusual structures and species--silatranes, metallacarboranes, alkalides and electrides, vapor-deposition species, proton and hybrid sponges, massive transition-metal clusters, and agostic ligands - Thorough examination of industrial processes using organometallic catalysts and their mechanisms - Entropy-driven reactions - Complete discussion of inorganic photochemistry
Aimed at senior undergraduates and first-year graduate students, this book offers a principles-based approach to inorganic chemistry that, unlike other texts, uses chemical applications of group theory and molecular orbital theory throughout as an underlying framework. This highly physical approach allows students to derive the greatest benefit of topics such as molecular orbital acid-base theory, band theory of solids, and inorganic photochemistry, to name a few. Takes a principles-based, group and molecular orbital theory approach to inorganic chemistry The first inorganic chemistry textbook to provide a thorough treatment of group theory, a topic usually relegated to only one or two chapters of texts, giving it only a cursory overview Covers atomic and molecular term symbols, symmetry coordinates in vibrational spectroscopy using the projection operator method, polyatomic MO theory, band theory, and Tanabe-Sugano diagrams Includes a heavy dose of group theory in the primary inorganic textbook, most of the pedagogical benefits of integration and reinforcement of this material in the treatment of other topics, such as frontier MO acid--base theory, band theory of solids, inorganic photochemistry, the Jahn-Teller effect, and Wade's rules are fully realized Very physical in nature compare to other textbooks in the field, taking the time to go through mathematical derivations and to compare and contrast different theories of bonding in order to allow for a more rigorous treatment of their application to molecular structure, bonding, and spectroscopy Informal and engaging writing style; worked examples throughout the text; unanswered problems in every chapter; contains a generous use of informative, colorful illustrations
GEORGE CHRISTOU Indiana University, Bloomington I am no doubt representative of a large number of current inorganic chemists in having obtained my undergraduate and postgraduate degrees in the 1970s. It was during this period that I began my continuing love affair with this subject, and the fact that it happened while I was a student in an organic laboratory is beside the point. I was always enchanted by the more physical aspects of inorganic chemistry; while being captivated from an early stage by the synthetic side, and the measure of creation with a small c that it entails, I nevertheless found the application of various theoretical, spectroscopic and physicochemical techniques to inorganic compounds to be fascinating, stimulating, educational and downright exciting. The various bonding theories, for example, and their use to explain or interpret spectroscopic observations were more or less universally accepted as belonging within the realm of inorganic chemistry, and textbooks of the day had whole sections on bonding theories, magnetism, kinetics, electron-transfer mechanisms and so on. However, things changed, and subsequent inorganic chemistry teaching texts tended to emphasize the more synthetic and descriptive side of the field. There are a number of reasons for this, and they no doubt include the rise of diamagnetic organometallic chemistry as the dominant subdiscipline within inorganic chemistry and its relative narrowness vis-d-vis physical methods required for its prosecution.
Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced aspects of key methods in biological inorganic chemistry. - Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout - Includes color images throughout to enable easier visualization of molecular mechanisms and structures - Provides worked examples and problems to help illustrate and test the reader's understanding of each technique - Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures
Inorganic chemistry continues to generate much current interest due to its array of applications, ranging from materials to biology and medicine. Techniques in Inorganic Chemistry assembles a collection of articles from international experts who describe modern methods used by research students and chemists for studying the properties and structure
This practical treatment considers the vast economic and environmental importance of inorganic chemistry in applications from agriculture to water treatment to materials for electronics. Topics covered include: atmospheric pollution and its abatement; water conditioning; fertilizers; cement chemistry; extractive metallurgy; metallic corrosion; catalysts; fuel cells and advanced batter technology; pulp and paper production; explosives; superficial fluids; sol-gel science; materials for electronics; and superconductors.
This unique text is ingeniously organized by class of compound and by property or reaction type, not group by group or element by element (which requires students to memorize isolated facts).
Electrochemistry can be an elegant and essential support to synthetic inorganic chemistry. However, it is often perceived as a difficult technique. This book aims to introduce inorganic chemists to electrochemical investigations in as straightforward a way as possible. First, the reader is introduced to the theory of electron transfer processes, how they can be studied by various electrochemical techniques, and the practical procedures required. The book then goes on to look extensively, and with numerous illustrations, at the application of the techniques in the multiple fields of inorganic chemistry (including organometallics, coordination compounds, bioinorganics/biomimetics and materials science). Topics covered include: metallocenes; organometallic and coordination complexes; metal complexes of redox active ligands; metal-carbonyl clusters; superconductors; molecular wires; and proteins. Throughout, special attention is paid to the structural effects accompanying the electron transfer processes. This unique book bridges the gap between undergraduate and research-level electrochemistry books, and will be welcomed as an introduction to electrochemical applications within inorganic chemistry.