Download Free A Survey Of Nonlinear Dynamics Book in PDF and EPUB Free Download. You can read online A Survey Of Nonlinear Dynamics and write the review.

This book is intended to give a survey of the whole field of nonlinear dynamics (or ?chaos theory?) in compressed form. It covers quite a range of topics besides the standard ones, for example, pde dynamics and Galerkin approximations, critical phenomena and renormalization group approach to critical exponents. The many meanings or measures of ?chaos? in the literature are summarized. A precise definition of chaos based on a carefully limited sensitive dependence is offered. An application to quantum chaos is made. The treatment does not emphasize mathematical rigor but insists that the crucial concepts and theorems be mathematically well-defined. Thus topology plays a basic role. This alone makes this book unique among short surveys, where the inquisitive reader must usually be satisfied with colorful similes, analogies, and hand-waving arguments.Richard Ingraham graduated with B.S. summa cum laude in mathematics from Harvard college and with M.A. and Ph.D in Physics from Harvard Graduate School. He was granted the Sheldon Prize Traveling Fellowship by Harvard College and was a member of the Institute for Advanced Study at Princeton for two years.
This book is intended to give a survey of the whole field of nonlinear dynamics (or “chaos theory”) in compressed form. It covers quite a range of topics besides the standard ones, for example, pde dynamics and Galerkin approximations, critical phenomena and renormalization group approach to critical exponents. The many meanings or measures of “chaos” in the literature are summarized. A precise definition of chaos based on a carefully limited sensitive dependence is offered. An application to quantum chaos is made. The treatment does not emphasize mathematical rigor but insists that the crucial concepts and theorems be mathematically well-defined. Thus topology plays a basic role. This alone makes this book unique among short surveys, where the inquisitive reader must usually be satisfied with colorful similes, analogies, and hand-waving arguments.Richard Ingraham graduated with B.S. summa cum laude in mathematics from Harvard college and with M.A. and Ph.D in Physics from Harvard Graduate School. He was granted the Sheldon Prize Traveling Fellowship by Harvard College and was a member of the Institute for Advanced Study at Princeton for two years.
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
Optimal growth theory studies the problem of efficient resource allocation over time, a fundamental concern of economic research. Since the 1970s, the techniques of nonlinear dynamical systems have become a vital tool in optimal growth theory, illuminating dynamics and demonstrating the possibility of endogenous economic fluctuations. Kazuo Nishimura's seminal contributions on business cycles, chaotic equilibria and indeterminacy have been central to this development, transforming our understanding of economic growth, cycles, and the relationship between them. The subjects of Kazuo's analysis remain of fundamental importance to modern economic theory. This book collects his major contributions in a single volume. Kazuo Nishimura has been recognized for his contributions to economic theory on many occasions, being elected fellow of the Econometric Society and serving as an editor of several major journals. Chapter “Introduction” is available open access under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License via link.springer.com.
The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 150 ready to run programs are included. New topics added to the fifth edition are Langton's ant, chaotic data communication, self-controlling feedback, differential forms and optimization, T-norms and T-conorms with applications.
This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
This book provides readers with a comprehensive survey of models of dynamic games in economics, including an extensive coverage of numerous fields of applications. It will also discuss and explain main concepts and techniques used in dynamic games, and inform readers of its major developments while equipping them with tools and ideas that will aid in the formulation of solutions for problems. A Survey of Dynamic Games in Economics will interest those who wish to study more about the conceptions, approaches and models that are applied in the domain of dynamic games.
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.