Download Free A Supplement To The Elements Of Euclid Book in PDF and EPUB Free Download. You can read online A Supplement To The Elements Of Euclid and write the review.

This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises