Download Free A Study On Lhc Jet Algorithms Book in PDF and EPUB Free Download. You can read online A Study On Lhc Jet Algorithms and write the review.

This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.
This book reviews the latest experimental results on jet physics from proton-proton collisons at the LHC. Jets allow to determine the strong coupling constant over a wide range of energies up the highest ones possible so far, and to constrain the gluon parton distribution of the proton, both of which are important uncertainties on theory predictions in general and for the Higgs boson in particular.A novel approach in this book is to categorize the examined quantities according to the types of absolute, ratio, or shape measurements and to explain in detail the advantages and differences. Including numerous illustrations and tables the physics message and impact of each observable is clearly elaborated.
The discovery of new physics at the LHC hinges on our ability to discriminate the old (the Standard Model) from the new. The study of the substructure of jets offers a powerful set of techniques for improving the reach of new physics searches at the LHC. Moreover, jet substructure observables are a sensitive probe of QCD dynamics and motivate a variety of tests of QCD. This thesis explores several jet substructure techniques with a particular focus on applications to event discrimination. First, a jet observable is introduced that probes the color structure of pairs of subjets. This observable is incorporated into a top tagging algorithm, where it is shown to improve discrimination between top jets and QCD jets. Second, an alternative approach to jet substructure is introduced that is distinct from the prevailing methods based on the clustering trees induced by sequential jet algorithms. This approach makes use of two-particle angular correlations to identify substructure within jets. In one application, this approach is used to construct a top tagging algorithm that is competitive with existing methods. In another application, ensemble averages of angular correlations are used to study the underlying event and pile-up effects.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.
This book describes research in two different areas of state-of-the-art hadron collider physics, both of which are of central importance in the field of particle physics. The first part of the book focuses on the search for supersymmetric particles called gluinos. The book subsequently presents a set of precision measurements of “multi-jet” collision events, which involve large numbers of newly created particles, and are among the dominant processes at the Large Hadron Collider (LHC). Now that a Higgs boson has been discovered at the LHC, the existence (or non-existence) of supersymmetric particles is of the utmost interest and significance, both theoretically and experimentally. In addition, multi-jet collision events are an important background process for a wide range of analyses, including searches for supersymmetry.
This thesis presents the first measurements of jets in relativistic heavy ion collisions as reported by the ATLAS Collaboration. These include the first direct observation of jet quenching through the observation of a centrality-dependent dijet asymmetry. Also, a series of jet suppression measurements are presented, which provide quantitative constraints on theoretical models of jet quenching. These results follow a detailed introduction to heavy ion physics with emphasis on the phenomenon of jet quenching and a comprehensive description of the ATLAS detector and its capabilities with regard to performing these measurements.
Hadronic jets feature in many final states of interest in modern collider experiments. They form a significant Standard Model background for many proposed new physics processes and also probe QCD interactions at several different scales. At high energies incoming protons produce beam jets. Correctly accounting for the beam and central jets is critical to precise understanding of hadronic final states at the Large Hadron Collider. We study jet cross sections as a function of the shape of both beam and central jets. This work focuses on measuring jet mass but our methods can be applied to other jet shape variables as well. Measuring jet mass introduces additional scales to the collision process and these scales produce large logarithms that need to be resummed. Factorizing the cross section into hard, jet, beam, and soft functions enables such resummation. We begin by studying jet production at e + e- collisions in order to focus on the effects of jet algorithms. These results can be carried over to the more complicated case of hadron collisions. We use the Sterman-Weinberg algorithm as a specific example and derive an expression for the quark jet function. Turning to hadron colliders, we show how the N-jettiness event shape divides phase space into N +2 regions, each containing one central or beam jet. Thus, N-jettiness works as a jet algorithm. Using a geometric measure gives central jets with circular boundaries. We then give a factorization theorem for the cross section fully differential in the mass of each jet, and compute the corresponding soft function at next-to-leading order (NLO). We use a method of hemisphere decomposition, which can also be applied to calculate N-jet soft functions defined with other jet algorithms. Our calculation of the N-jettiness soft function provides the final missing ingredient to extend NLO cross sections to resunmmed predictions at next-to-next-to-leading logarithmic order. We study the production of an exclusive jet together with a Standard Model Higgs boson. Based on theoretical reasons and agreement between our calculation and data from the ATLAS collaboration, we argue that our results for the jet mass spectrum are a good approximation also for inclusive jet production and other hard processes.
This thesis is based on the first data from the Large Hadron Collider (LHC) at CERN. Its theme can be described as the classical Rutherford scattering experiment adapted to the LHC: measurement of scattering angles to search for new physics and substructure. At the LHC, colliding quarks and gluons exit the proton collisions as collimated particle showers, or jets. The thesis presents studies of the scattering angles of these jets. It includes a phenomenological study at the LHC design energy of 14 TeV, where a model of so-called large extra dimensions is used as a benchmark process for the sensitivity to new physics. The experimental result is the first measurement, made in 2010, by ATLAS, operating at the LHC start-up energy of 7 TeV. The result is compatible with the Standard Model and demonstrates how well the physics and the apparatus are understood. The first data is a tiny fraction of what will be accumulated in the coming years, and this study has set the stage for performing these measurements with confidence as the LHC accumulates luminosity and increases its energy, thereby probing smaller length scales.