Download Free A Study Of The Possibilities For Limb Regeneration In Lizard Anolis Carolinensis Book in PDF and EPUB Free Download. You can read online A Study Of The Possibilities For Limb Regeneration In Lizard Anolis Carolinensis and write the review.

The present review covers a very neglected field in regeneration studies, namely, tissue and organ regeneration in reptiles, especially represented by the lizard model of regeneration. The term “regeneration” is intended here as “the ability of an adult organism to recover damaged or completely lost body parts or organs.” The process of recovery is further termed “restitutive regeneration” when the lost part is reformed and capable of performing the complete or partial physiological activity performed by the original, lost body part. Lizards represent the only amniotes that at the same time show successful organ regeneration, in the tail, and organ failure, in the limb (Marcucci 1930a, b; Simpson 1961, 1970, 1983). This condition offers a unique opportunity to study at the same time mechanisms that in different regions of the same animal control the success or failure of regeneration. The lizard model is usually neglected in the literature despite the fact that the lizard is an amniote with a basic histological structure similar to that of mammals, and it is therefore a better model than the salamander (an a- mniote) model to investigate regeneration issues.
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
When a predator attacks, prey are faced with a series of 'if', 'when' and 'how' escape decisions – these critical questions are the foci of this book. Cooper and Blumstein bring together a balance of theory and empirical research to summarise over fifty years of scattered research and benchmark current thinking in the rapidly expanding literature on the behavioural ecology of escaping. The book consolidates current and new behaviour models with taxonomically divided empirical chapters that demonstrate the application of escape theory to different groups. The chapters integrate behaviour with physiology, genetics and evolution to lead the reader through the complex decisions faced by prey during a predator attack, examining how these decisions interact with life history and individual variation. The chapter on best practice field methodology and the ideas for future research presented throughout, ensure this volume is practical as well as informative.