Download Free A Study Of Prestressed Concrete Book in PDF and EPUB Free Download. You can read online A Study Of Prestressed Concrete and write the review.

This textbook imparts a firm understanding of the behavior of prestressed concrete and how it relates to design based on the 2014 ACI Building Code. It presents the fundamental behavior of prestressed concrete and then adapts this to the design of structures. The book focuses on prestressed concrete members including slabs, beams, and axially loaded members and provides computational examples to support current design practice along with practical information related to details and construction with prestressed concrete. It illustrates concepts and calculations with Mathcad and EXCEL worksheets. Written with both lucid instructional presentation as well as comprehensive, rigorous detail, the book is ideal for both students in graduate-level courses as well as practicing engineers.
This book presents a selection of the author‘s firsthand experience with incidents related to reinforced and prestressed concrete structures, helping readers gain an understanding of errors that can occur in order to avoid making them. He includes mistakes discovered at the design stage, ones that led to failures, and some that involved partial structure collapse all of which required remedial action to ensure safety. The book focuses on specific incidents that occurred at various points in the construction process, including mistakes related to structural misunderstanding, extrapolation of codes of practice, and poor construction.
Prestressed concrete is widely used in the construction industry in buildings, bridges, and other structures. The new edition of this book provides up-to-date guidance on the detailed design of prestressed concrete structures according to the provisions of the latest preliminary version of Eurocode 2: Design of Concrete Structures, DD ENV 1992-1-1: 1992. The emphasis throughout is on design - the problem of providing a structure to fulfil a given purpose - but fundamental concepts are also described in detail. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings. The text is illustrated throughout with worked examples and problems for further study. Examples are given of computer spreadsheets for typical design calculations. Prestressed Concrete Design will be a valuable guide to practising engineers, students and research workers.
This book details the theory and applications of finite element (FE) modeling of post-tensioned (PT) concrete structures, and provides the updated MATLAB code (as of 2019). The challenge of modeling PT prestressed concrete structures lies in the treatment of the interface between the concrete and prestressing tendons. Using MATLAB, this study develops an innovative nonlinear FE formulation which incorporates contact techniques and engineering elements to considerably reduce the need of computational power. This FE formulation has the ability to simulate different PT frame systems with fully bonded, fully unbonded or partially bonded tendons, as well as actual sliding behavior and frictional effects in the tendons. It also allows for the accurate simulation of anchor seating loss.
Concrete is an integral part of twenty-first century structural engineering, and an understanding of how to analyze and design concrete structures is a vital part of training as a structural engineer. With Eurocode legislation increasingly replacing British Standards, it’s also important to know how this affects the way you can work with concrete. Newly revised to Eurocode 2, this second edition retains the original’s emphasis on qualitative understanding of the overall behaviour of concrete structures. Now expanded, with a new chapter dedicated to case studies, worked examples, and exercise examples, it is an even more comprehensive guide to conceptual design, analysis, and detailed design of concrete structures. The book provides civil and structural engineering students with complete coverage of the analysis and design of reinforced and prestressed concrete structures. Great emphasis is placed on developing a qualitative understanding of the overall behaviour of structures.
Completely revised to reflect the new ACI 318-08 Building Code and International Building Code, IBC 2009, this popular book offers a unique approach to examining the design of prestressed concrete members in a logical, step-by-step trial and adjustment procedure. Integrates handy flow charts to help readers better understand the steps needed for design and analysis. Includes a revised chapter containing the latest ACI and AASHTO Provisions on the design of post-tensioned beam end anchorage blocks using the strut-and-tie approach in conformity with ACI 318-08 Code. Offers a new complete section with two extensive design examples using the strut-and-tie approach for the design of corbels and deep beams. Features an addition to the elastic method of design, with comprehensive design examples on LRFD and Standard AASHTO designs of bridge deck members for flexure, shear and torsion, conforming to the latest AASHTO specifications. Includes a revised chapter on slender columns, including a simplified load-contour biaxial bending method which is easier to apply in desiign, using moments rather than loads in the reciprocal approach. A useful construction reference for engineers.
This text presents the theoretical and practical aspects of analysis and design, complemented by numerous design examples.
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.
At head of title: National Cooperative Highway Research Program.