Download Free A Study Of Neutrino Oscillation Models With Super Kamiokande Atmospheric Neutrino Data Book in PDF and EPUB Free Download. You can read online A Study Of Neutrino Oscillation Models With Super Kamiokande Atmospheric Neutrino Data and write the review.

Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
Takaaki Kajita and Arthur McDonald have been jointly awarded the 2015 Nobel Prize in Physics "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita is a Japanese physicist who is well known for neutrino experiments at the Kamiokande and the even more outsized Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into the rise of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the three families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible footprint in the history of big and better science. Copyright of the cover image belongs to Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo.
This authoritative text provides a lively, thought-provoking and informative summary of neutrino astrophysics. Neutrino astronomy is being revolutionized by the availability of new observational facilities. Theoretical work in astrophysics and in particle physics in increasing rapidly. The subject of solar neutrinos has many seemingly independent aspects, both in its theoretical basis (involving nuclear, atomic, and particle physics, geochemistry, and astronomy). For many physicists, solar neutrinos constitute the low-energy frontier of high-energy physics. Results from all these disciplines are combined here, providing a timely and unified discussion of the field. Each chapter begins with a succinct overview of material to be presented and ends with an annotated bibliography. For advanced undergraduate students, but will be essential reading for all researchers interested in the physics of neutrinos and what they reveal about the nature of the Universe.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Contents:Solar Neutrinos:The Latest Solar Neutrino Results in Super-Kamiokande (Y Koshio)Weak Current in Deuterium (T Sato)Solar Neutrino Phenomenology and Future:Solar Neutrino Oscillations (M C Gonzalez-Garcia)The Status of Resonant Spin Flavor Precession (C S Lim)Atmospheric Neutrinos:Status of the Atmospheric Neutrino Studies (M D Messier)Cosmic Ray Measurements for Atmospheric Neutrino with BESS-TeV (K Abe)Oscillation Phenomenology I:Calculations of the Atmospheric ν Fluxes (P Lipari)Three-Flavor Analysis of Atmospheric and Solar Neutrinos (A Marrone)Absolute Neutrino Mass:Neutrinoless Double Beta Decay and Neutrino Oscillations (H V Klapdor-Kleingrothaus)Accelerator Neutrinos, CPV:The MINOS Experiment (M D Messier)The JHF-Kamioka Neutrino Project (T Kajita)Models and GUTs:Proton Decay in the Semi-Simple Unification Model (T Watari)Leptogenesis via LHu Flat Direction (M Fujii)Lepton Flavor Violation:Probing Physics Beyond the Standard Model from Lepton Sector (J Hisano)Oscillation Phenomenology II:Four Puzzles of Neutrino Mixing (S M Barr)Supernova Neutrinos:Supernova Neutrinos (J F Beacom)and other papers Readership: Researchers in high energy physics. Keywords:Solar Neutrinos;Atmospheric Neutrinos;Oscillation Phenomenology;Neutrino Mass;Accelerator Neutrinos;CP Violation;GUTs;Lepton Flavor Violation;Supernova Neutrinos
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
This volume brings together international experts in diverse areas of physics to discuss recent progress in the experimental and theoretical study of neutrino oscillations.Readers are brought up to date with the latest developments in important neutrino experiments, and the associated progress in theory is summarized. The principal projects worldwide, such as Super-Kamiokande, SNO, KamLAND, are considered, and contributions also report on future experiments, including JPARC, OPERA, and MINOS.Several other related topics, such as dark matter, double beta decay, lepton flavor violation, and cosmology, are discussed, reflecting the wide-ranging specializations of many contributors outside of pure neutrino physics.
Containing the Proceedings of the Third International Conference on Physics Beyond the Standard Model, this book reports the latest experimental and theoretical results and ideas in this exciting field, at the interface between particle physics, astrophysics, and nuclear physics. Taken as a whole, this book presents an overview of the current statu
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations (θ13), currently the “holy grail” of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel “library event matching” (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS’ (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS’ final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa’s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.