Download Free A Study Of Highly Energetic Top Quarks Produced In Proton Proton Collisions Performed With The Atlas Detector Book in PDF and EPUB Free Download. You can read online A Study Of Highly Energetic Top Quarks Produced In Proton Proton Collisions Performed With The Atlas Detector and write the review.

This book discusses searches for Dark Matter at the CERN’s LHC, the world’s most powerful accelerator. It introduces the relevant theoretical framework and includes an in-depth discussion of the Effective Field Theory approach to Dark Matter production and its validity, as well as an overview of the formalism of Simplified Dark Matter models. Despite overwhelming astrophysical evidence for Dark Matter and numerous experimental efforts to detect it, the nature of Dark Matter still remains a mystery and has become one of the hottest research topics in fundamental physics. Two searches for Dark Matter are presented, performed on data collected with the ATLAS experiment. They analyze missing-energy final states with a jet or with top quarks. The analyses are explained in detail, and the outcomes and their interpretations are discussed, also in view of the precedent analysis of theoretical approaches. Given its depth of coverage, the book represents an excellent reference guide for all physicists interested in understanding the theoretical and experimental considerations relevant to Dark Matter searches at the LHC.
This book reports on the search for a new heavy particle, the Vector-Like Top quark (VLT), in the Large Hadron Collider (LHC) at CERN. The signal process is the pair production of VLT decaying into a Higgs boson and top quark (TT→Ht+X, X=Ht, Wb, Zt). The signal events result in top–antitop quarks final states with additional heavy flavour jets. The book summarises the analysis of the data collected with the ATLAS detector in 2015 and 2016. In order to better differentiate between signals and backgrounds, exclusive taggers of top quark and Higgs boson were developed and optimised for VLT signals. These efforts improved the sensitivity by roughly 30%, compared to the previous analysis. The analysis outcomes yield the strongest constraints on parameter space in various BSM theoretical models. In addition, the book addresses detector operation and the evaluation of tracking performance. These efforts are essential to properly collecting dense events and improving the accuracy of the reconstructed objects that are used for particle identification. As such, they represent a valuable contribution to data analysis in extremely dense environments.
The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area.
Somewhere in the Multiverse, in a lab distant from the Makers’ Planet, Tunnel Maker, Creator of Bridges, answers an alarm. His inter-universe probe is detecting signals from another bubble universe, indicating that some new high-intelligence alien species is doing high-energy physics and creating hyperdimensional signals. Tunnel Maker knows that, in another bubble universe, the predatory Hive Mind should be receiving the same signals. It is time to make a Bridge . . . George Griffin, experimental physicist working at the newly-operational Superconducting Super Collider (SSC), observes a proton-proton collision that doesn’t make sense. He chases it down and discovers a Bridgehead, a wormhole link to the Makers’ universe. With help from theorist Roger Coulton and writer Alice Lancaster, he establishes communication with the Makers, only to learn that a Hive invasion of Earth is imminent. As the Hive invasion is destroying humanity, by wormhole the Makers transport George and Roger back to 1987, where they must undertake the task of manipulating the Reagan, Bush, and Clinton administrations to change the future and prevent construction of the SSC. At the publisher's request, this title is sold without DRM (Digital Rights Management).
Oliver Pooth describes the silicon strip tracker of the CMS detector and discusses methods of quality control that are new to the field of particle detector physics. These methods were established to guarantee a uniform behaviour of all detector modules which were built and tested in various places worldwide.
This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.
This book provides a thorough introduction to the phenomenology of heavy flavour physics, those working on the B-factories, LHCb, BTeV, HERA and the Tevatron. It explains how heavy quark theory could be implemented on the lattice, and discusses the status of CP-violation in the neutral kaon system.
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches – in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.