Download Free A Students Guide To The Mathematics Of Astronomy Book in PDF and EPUB Free Download. You can read online A Students Guide To The Mathematics Of Astronomy and write the review.

Plain-language explanations and a rich set of supporting material help students understand the mathematical concepts and techniques of astronomy.
The study of astronomy offers an unlimited opportunity for us to gain a deeper understanding of our planet, the Solar System, the Milky Way Galaxy and the known Universe. Using the plain-language approach that has proven highly popular in Fleisch's other Student's Guides, this book is ideal for non-science majors taking introductory astronomy courses. The authors address topics that students find most troublesome, on subjects ranging from stars and light to gravity and black holes. Dozens of fully worked examples and over 150 exercises and homework problems help readers get to grips with the concepts in each chapter. An accompanying website features a host of supporting materials, including interactive solutions for every exercise and problem in the text and a series of video podcasts in which the authors explain the important concepts of every section of the book.
The study of astronomy offers an unlimited opportunity for us to gain a deeper understanding of our planet, the Solar System, the Milky Way Galaxy and the known Universe. Using the plain-language approach that has proven highly popular in Fleisch's other Student's Guides, this book is ideal for non-science majors taking introductory astronomy courses. The authors address topics that students find most troublesome, on subjects ranging from stars and light to gravity and black holes. Dozens of fully worked examples and over 150 exercises and homework problems help readers get to grips with the concepts in each chapter. An accompanying website features a host of supporting materials, including interactive solutions for every exercise and problem in the text and a series of video podcasts in which the authors explain the important concepts of every section of the book.
A clear guide to the key concepts and mathematical techniques underlying the Schrödinger equation, including homework problems and fully worked solutions.
Clear explanations and supportive online material develop an intuitive understanding of the meaning and use of Laplace.
Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law, and the Ampere–Maxwell law are four of the most influential equations in science. In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
Written to complement course textbooks, this book focuses on the topics that undergraduates in physics and engineering find most difficult.
Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.
This introduction to dimensional analysis covers the methods, history and formalisation of the field. Utilising topics including mechanics, hydro- and electrodynamics, and thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis, making it perfect for students on introductory courses in physics, engineering and mathematics.
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.