Download Free A Source Book In Matroid Theory Book in PDF and EPUB Free Download. You can read online A Source Book In Matroid Theory and write the review.

by Gian-Carlo Rota The subjects of mathematics, like the subjects of mankind, have finite lifespans, which the historian will record as he freezes history at one instant of time. There are the old subjects, loaded with distinctions and honors. As their problems are solved away and the applications reaped by engineers and other moneymen, ponderous treatises gather dust in library basements, awaiting the day when a generation as yet unborn will rediscover the lost paradise in awe. Then there are the middle-aged subjects. You can tell which they are by roaming the halls of Ivy League universities or the Institute for Advanced Studies. Their high priests haughtily refuse fabulous offers from eager provin cial universities while receiving special permission from the President of France to lecture in English at the College de France. Little do they know that the load of technicalities is already critical, about to crack and submerge their theorems in the dust of oblivion that once enveloped the dinosaurs. Finally, there are the young subjects-combinatorics, for instance. Wild eyed individuals gingerly pick from a mountain of intractable problems, chil dishly babbling the first words of what will soon be a new language. Child hood will end with the first Seminaire Bourbaki. It could be impossible to find a more fitting example than matroid theory of a subject now in its infancy. The telltale signs, for an unfailing diagnosis, are the abundance of deep theorems, going together with a paucity of theories.
The study of matroids is a branch of discrete mathematics with basic links to graphs, lattices, codes, transversals, and projective geometries. Matroids are of fundamental importance in combinatorial optimization and their applications extend into electrical engineering and statics. This incisive survey of matroid theory falls into two parts: the first part provides a comprehensive introduction to the basics of matroid theory while the second treats more advanced topics. The book contains over five hundred exercises and includes, for the first time in one place, short proofs for most of the subjects' major theorems. The final chapter lists sixty unsolved problems and details progress towards their solutions.
I. The topics of this book The concept of a matroid has been known for more than five decades. Whitney (1935) introduced it as a common generalization of graphs and matrices. In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas. However, like other branches of mathematics, combinatorics also encompasses some gen eral tools that can be learned and then applied, to various problems. Matroid theory is one of these tools. (2) Within combinatorics, the relative importance of algorithms has in creased with the spread of computers. Classical analysis did not even consider problems where "only" a finite number of cases were to be studied. Now such problems are not only considered, but their complexity is often analyzed in con siderable detail. Some questions of this type (for example, the determination of when the so called "greedy" algorithm is optimal) cannot even be answered without matroidal tools.
The present volume of reprints are what I consider to be my most interesting and influential papers on algebra and topology. To tie them together, and to place them in context, I have supplemented them by a series of brief essays sketching their historieal background (as I see it). In addition to these I have listed some subsequent papers by others which have further developed some of my key ideas. The papers on universal algebra, lattice theory, and general topology collected in the present volume concern ideas which have become familiar to all working mathematicians. It may be helpful to make them readily accessible in one volume. I have tried in the introduction to each part to state the most significant features of ea ch paper reprinted there, and to indieate later developments. The background that shaped and stimulated my early work on universal algebra, lattice theory, and topology may be of some interest. As a Harvard undergraduate in 1928-32, I was encouraged to do independent reading and to write an original thesis. My tutorial reading included de la Vallee-Poussin's beautiful Cours d'Analyse Infinitesimale, Hausdorff's Grundzüge der Mengenlehre, and Frechet's Espaces Abstraits. In addition, I discovered Caratheodory's 1912 paper "Vber das lineare Mass von Punktmengen" and Hausdorff's 1919 paper on "Dimension und Ausseres Mass," and derived much inspiration from them. A fragment of my thesis, analyzing axiom systems for separable metrizable spaces, was later published [2]. * This background led to the work summarized in Part IV.
First comprehensive, accessible account; second edition has expanded bibliography and a new appendix surveying recent research.
A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis. This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the 1990's. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems. This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science. From the reviews: "...The book has been prepared very carefully, contains a lot of interesting results and is highly recommended for graduate and postgraduate students." András Recski, Mathematical Reviews Clippings 2000m:93006
Algebraic & geometry methods have constituted a basic background and tool for people working on classic block coding theory and cryptography. Nowadays, new paradigms on coding theory and cryptography have arisen such as: Network coding, S-Boxes, APN Functions, Steganography and decoding by linear programming. Again understanding the underlying procedure and symmetry of these topics needs a whole bunch of non trivial knowledge of algebra and geometry that will be used to both, evaluate those methods and search for new codes and cryptographic applications. This book shows those methods in a self-contained form.
The Tutte Polynomial touches on nearly every area of combinatorics as well as many other fields, including statistical mechanics, coding theory, and DNA sequencing. It is one of the most studied graph polynomials. Handbook of the Tutte Polynomial and Related Topics is the first handbook published on the Tutte Polynomial. It consists of thirty-four chapters written by experts in the field, which collectively offer a concise overview of the polynomial’s many properties and applications. Each chapter covers a different aspect of the Tutte polynomial and contains the central results and references for its topic. The chapters are organized into six parts. Part I describes the fundamental properties of the Tutte polynomial, providing an overview of the Tutte polynomial and the necessary background for the rest of the handbook. Part II is concerned with questions of computation, complexity, and approximation for the Tutte polynomial; Part III covers a selection of related graph polynomials; Part IV discusses a range of applications of the Tutte polynomial to mathematics, physics, and biology; Part V includes various extensions and generalizations of the Tutte polynomial; and Part VI provides a history of the development of the Tutte polynomial. Features Written in an accessible style for non-experts, yet extensive enough for experts Serves as a comprehensive and accessible introduction to the theory of graph polynomials for researchers in mathematics, physics, and computer science Provides an extensive reference volume for the evaluations, theorems, and properties of the Tutte polynomial and related graph, matroid, and knot invariants Offers broad coverage, touching on the wide range of applications of the Tutte polynomial and its various specializations
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.