Download Free A Single Chip Multiprocessor Architecture With Hardware Thread Support Book in PDF and EPUB Free Download. You can read online A Single Chip Multiprocessor Architecture With Hardware Thread Support and write the review.

Multithreaded architectures now appear across the entire range of computing devices, from the highest-performing general purpose devices to low-end embedded processors. Multithreading enables a processor core to more effectively utilize its computational resources, as a stall in one thread need not cause execution resources to be idle. This enables the computer architect to maximize performance within area constraints, power constraints, or energy constraints. However, the architectural options for the processor designer or architect looking to implement multithreading are quite extensive and varied, as evidenced not only by the research literature but also by the variety of commercial implementations. This book introduces the basic concepts of multithreading, describes a number of models of multithreading, and then develops the three classic models (coarse-grain, fine-grain, and simultaneous multithreading) in greater detail. It describes a wide variety of architectural and software design tradeoffs, as well as opportunities specific to multithreading architectures. Finally, it details a number of important commercial and academic hardware implementations of multithreading.
Multithreaded architectures now appear across the entire range of computing devices, from the highest-performing general purpose devices to low-end embedded processors. Multithreading enables a processor core to more effectively utilize its computational resources, as a stall in one thread need not cause execution resources to be idle. This enables the computer architect to maximize performance within area constraints, power constraints, or energy constraints. However, the architectural options for the processor designer or architect looking to implement multithreading are quite extensive and varied, as evidenced not only by the research literature but also by the variety of commercial implementations. This book introduces the basic concepts of multithreading, describes a number of models of multithreading, and then develops the three classic models (coarse-grain, fine-grain, and simultaneous multithreading) in greater detail. It describes a wide variety of architectural and software design tradeoffs, as well as opportunities specific to multithreading architectures. Finally, it details a number of important commercial and academic hardware implementations of multithreading. Table of Contents: Introduction / Multithreaded Execution Models / Coarse-Grain Multithreading / Fine-Grain Multithreading / Simultaneous Multithreading / Managing Contention / New Opportunities for Multithreaded Processors / Experimentation and Metrics / Implementations of Multithreaded Processors / Conclusion
Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP's cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP's performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs
Multithreaded computer architecture has emerged as one of the most promising and exciting avenues for the exploitation of parallelism. This new field represents the confluence of several independent research directions which have united over a common set of issues and techniques. Multithreading draws on recent advances in dataflow, RISC, compiling for fine-grained parallel execution, and dynamic resource management. It offers the hope of dramatic performance increases through parallel execution for a broad spectrum of significant applications based on extensions to `traditional' approaches. Multithreaded Computer Architecture is divided into four parts, reflecting four major perspectives on the topic. Part I provides the reader with basic background information, definitions, and surveys of work which have in one way or another been pivotal in defining and shaping multithreading as an architectural discipline. Part II examines key elements of multithreading, highlighting the fundamental nature of latency and synchronization. This section presents clever techniques for hiding latency and supporting large synchronization name spaces. Part III looks at three major multithreaded systems, considering issues of machine organization and compilation strategy. Part IV concludes the volume with an analysis of multithreaded architectures, showcasing methodologies and actual measurements. Multithreaded Computer Architecture: A Summary of the State of the Art is an excellent reference source and may be used as a text for advanced courses on the subject.
Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. Compounding these problems is the simple fact that with the immense numbers of transistors available on today's microprocessor chips, it is too costly to design and debug ever-larger processors every year or two. CMPs avoid these problems by filling up a processor die with multiple, relatively simpler processor cores instead of just one huge core. The exact size of a CMP's cores can vary from very simple pipelines to moderately complex superscalar processors, but once a core has been selected the CMP's performance can easily scale across silicon process generations simply by stamping down more copies of the hard-to-design, high-speed processor core in each successive chip generation. In addition, parallel code execution, obtained by spreading multiple threads of execution across the various cores, can achieve significantly higher performance than would be possible using only a single core. While parallel threads are already common in many useful workloads, there are still important workloads that are hard to divide into parallel threads. The low inter-processor communication latency between the cores in a CMP helps make a much wider range of applications viable candidates for parallel execution than was possible with conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications is the main factor limiting acceptance of CMPs in some types of systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Contents: The Case for CMPs / Improving Throughput / Improving Latency Automatically / Improving Latency using Manual Parallel Programming / A Multicore World: The Future of CMPs
Chip multiprocessors - also called multi-core microprocessors or CMPs for short - are now the only way to build high-performance microprocessors, for a variety of reasons. Large uniprocessors are no longer scaling in performance, because it is only possible to extract a limited amount of parallelism from a typical instruction stream using conventional superscalar instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on today's processors, or the power dissipation will become prohibitive in all but water-cooled systems. After a discussion of the basic pros and cons of CMPs when they are compared with conventional uniprocessors, this book examines how CMPs can best be designed to handle two radically different kinds of workloads that are likely to be used with a CMP: highly parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-sensitive applications at the other. Throughput-sensitive applications, such as server workloads that handle many independent transactions at once, require careful balancing of all parts of a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara, that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive applications - many desktop applications fall into this category - require a focus on reducing inter-core communication latency and applying techniques to help programmers divide their programs into multiple threads as easily as possible. This book discusses many techniques that can be used in CMPs to simplify parallel programming, with an emphasis on research directions proposed at Stanford University. To illustrate the advantages possible with a CMP using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to automatically break up nominally sequential applications into parallel threads on a CMP, and transactional memory. This model can greatly simplify manual parallel programming by using hardware - instead of conventional software locks - to enforce atomic code execution of blocks of instructions, a technique that makes parallel coding much less error-prone. Book jacket.
The Hydra chip multiprocessor (CMP) integrates four MIP-based processors and their primary caches on a single chip together with a shared secondary cache. A standard CMP offers implementation and performance advantages compared to wide-issue superscalar design & However, it must be programmed with a more complicated parallel programming model to obtain maximum performance. To simplify parallel programming, the Hydra CMP supports thread-level speculation and memory renaming, a paradigm that allows performance similar to a uniprocessor of comparable die area on integer programs. This article motivates the design of a CMP, describes the architecture of the Hydra design with a focus on its speculative thread support, and describes our prototype implementation.
The microprocessors will have more than a billion logic transistors on a single chip in the near future. Several alternatives have been suggested for obtaining highest performance with billion-transistor chips. To achieve the highest performance possible, an on-chip multiprocessor will become one promising alternative to the current superscalar microprocessor. It may execute multiple threads effectively on multiple processors in parallel if the application program is parallelized properly. This increases the utilization of the processor and provides latency tolerance for the latency caused from data dependency and cache misses. The Electronics and Telecommunications Research Institute (ETRI) in South Korea developed an on-chip multiprocessor RAPTOR Simulator "RapSim", which contains four SPARC microprocessor cores in it. To support this 4-way multiprocessor simulator, Multithreaded Mini Operating System (MMOS) was developed by OSU MMOS group. RapSim runs multiple threads on multiple processor cores concurrently. POSIX threads was used to build Symmetric Multiprocessor (SMP) safe Pthreads package, called MMOS. Benchmarks should be properly parallelized by the programmer to run multiple threads across the multiple processors simultaneously. Performance simulation results shows the RAPTOR can exploit thread level parallelism effectively and offer a promising architecture for future on-chip multiprocessor designs.
The saturation of design complexity and clock frequencies for single-core processors has resulted in the emergence of multicore architectures as an alternative design paradigm. Nowadays, multicore/multithreaded computing systems are not only a de-facto standard for high-end applications, they are also gaining popularity in the field of embedded computing. The start of the multicore era has altered the concepts relating to almost all of the areas of computer architecture design, including core design, memory management, thread scheduling, application support, inter-processor communication, debugging, and power management. This book gives readers a holistic overview of the field and guides them to further avenues of research by covering the state of the art in this area. It includes contributions from industry as well as academia.