Download Free A Short History Of Greek Mathematics Book in PDF and EPUB Free Download. You can read online A Short History Of Greek Mathematics and write the review.

Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.
This book provides a stimulating presentation of the history of Greek mathematics, with special emphasis on the Alexandrian school. Beginning with number systems of the ancients and Egyptian influences on Greek mathematics, the book traces the development up to Pappus and Proclus in the fourth century A.D. This is a standard work on the history of Greek mathematics, with special emphasis on the Alexandrian school of mathematics.
The sequel to Unexpected Links Between Egyptian and Babylonian Mathematics (World Scientific, 2005), this book is based on the author's intensive and ground breaking studies of the long history of Mesopotamian mathematics, from the late 4th to the late 1st millennium BC. It is argued in the book that several of the most famous Greek mathematicians appear to have been familiar with various aspects of Babylonian “metric algebra,” a convenient name for an elaborate combination of geometry, metrology, and quadratic equations that is known from both Babylonian and pre-Babylonian mathematical clay tablets. The book's use of “metric algebra diagrams” in the Babylonian style, where the side lengths and areas of geometric figures are explicitly indicated, instead of wholly abstract “lettered diagrams” in the Greek style, is essential for an improved understanding of many interesting propositions and constructions in Greek mathematical works. The author's comparisons with Babylonian mathematics also lead to new answers to some important open questions in the history of Greek mathematics.
The ancient Greeks played a fundamental role in the history of mathematics and their ideas were reused and developed in subsequent periods all the way down to the scientific revolution and beyond. In this, the first complete history for a century. Reviel Netz offers a panoramic view of the rise and influence of Greek mathematics and its significance in world history. He explores the Near Eastern antecedents and the social and intellectual developments underlying the subject's beginnings in Greece in the fifth century BCE. He leads the reader through the proofs and arguments of key figures like Archytas, Euclid and Archimedes, and considers the totality of the Greek mathematical achievement which also includes, in addition to pure mathematics, such applied fields as optics, music, mechanics and, above all, astronomy. This is the story not only of a major historical development, but of some of the finest mathematics ever created.
The world around us is saturated with numbers. They are a fundamental pillar of our modern society, and accepted and used with hardly a second thought. But how did this state of affairs come to be? In this book, Leo Corry tells the story behind the idea of number from the early days of the Pythagoreans, up until the turn of the twentieth century. He presents an overview of how numbers were handled and conceived in classical Greek mathematics, in the mathematics of Islam, in European mathematics of the middle ages and the Renaissance, during the scientific revolution, all the way through to the mathematics of the 18th to the early 20th century. Focusing on both foundational debates and practical use numbers, and showing how the story of numbers is intimately linked to that of the idea of equation, this book provides a valuable insight to numbers for undergraduate students, teachers, engineers, professional mathematicians, and anyone with an interest in the history of mathematics.
The aim of this book is to explain the shape of Greek mathematical thinking. It can be read on three levels: as a description of the practices of Greek mathematics; as a theory of the emergence of the deductive method; and as a case-study for a general view on the history of science. The starting point for the enquiry is geometry and the lettered diagram. Reviel Netz exploits the mathematicians' practices in the construction and lettering of their diagrams, and the continuing interaction between text and diagram in their proofs, to illuminate the underlying cognitive processes. A close examination of the mathematical use of language follows, especially mathematicians' use of repeated formulae. Two crucial chapters set out to show how mathematical proofs are structured and explain why Greek mathematical practice manages to be so satisfactory. A final chapter looks into the broader historical setting of Greek mathematical practice.
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.