Download Free A Short Course In General Relativity And Cosmology Book in PDF and EPUB Free Download. You can read online A Short Course In General Relativity And Cosmology and write the review.

Unlike most traditional introductory textbooks on relativity and cosmology that answer questions like “Does accelerated expansion pull our bodies apart?”, “Does the presence of dark matter affect the classical tests of general relativity?” in a qualitative manner, the present text is intended as a foundation, enabling students to read and understand the textbooks and many of the scientific papers on the subject. And, above all, the readers are taught and encouraged to do their own calculations, check the numbers and answer the above and other questions regarding the most exciting discoveries and theoretical developments in general relativistic cosmology, which have occurred since the early 1980s. In comparison to these intellectual benefits the text is short. In fact, its brevity without neglect of scope or mathematical accessibility of key points is rather unique. The authors connect the necessary mathematical concepts and their reward, i.e. the understanding of an important piece of modern physics, along the shortest path. The unavoidable mathematical concepts and tools are presented in as straightforward manner as possible. Even though the mathematics is not very difficult, it certainly is beneficial to know some statistical thermodynamics as well as some quantum mechanics. Thus the text is suitable for the upper undergraduate curriculum.
Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.
Suitable as a one-semester course in general relativity for senior undergraduate or beginning graduate students, this text clarifies the mathematical aspects of Einstein's general theory of relativity without sacrificing physical understanding. The text begins with an exposition of those aspects of tensor calculus and differential geometry needed for a proper exposition of the subject. The discussion then turns to the spacetime of general relativity and to geodesic motion, comparisons and contrasts with Newton's theory being drawn where appropriate. A brief consideration of the field equations is followed by a discussion of physics in the vicinity of massive objects, including an elementary treatment of black holes. Particular attention is paid to those aspects of the theory that have observational consequences. The book concludes with brief introductory chapters on gravitational radiation and cosmology, and includes an appendix that reviews the special theory of relativity. In preparing this new edition, the authors have made extensive revisions to the original text. In particular, the first three chapters -- covering coordinate systems, tensors and the geometry of curved spaces -- have been completely rewritten to make the material readily accessible to physics students. Many examples, exercises and problems help guide the student through the theory.
Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field.Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.
An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.
The textbook introduces students to basic geometric concepts, such as metrics, connections and curvature, before examining general relativity in more detail. It shows the observational evidence supporting the theory, and the description general relativity provides of black holes and cosmological spacetimes. --
Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.
Gravitational physics has now become a mainstream topic in physics and physics teaching. In particular cosmology and gravitational wave physics are at the focus of a great deal of current research. Thus it is important to introduce students to General Relativity as soon as reasonable. This textbook offers a brief but comprehensive treatment accessible to advanced undergraduate students, graduate students, and any physicist or mathematician interested in understanding the material in a short time. The author, an experienced teacher of the subject, has included numerous examples and exercises to help students consolidate the ideas they have learned. Solutions to the exercises are provided as supplementary material in the online chapters.
General relativity is a cornerstone of modern physics, and is of major importance in its applications to cosmology. Plebanski and Krasinski are experts in the field and provide a thorough introduction to general relativity, guiding the reader through complete derivations of the most important results. Providing coverage from a unique viewpoint, geometrical, physical and astrophysical properties of inhomogeneous cosmological models are all systematically and clearly presented, allowing the reader to follow and verify all derivations. Many topics are included that are not found in other textbooks.
This book offers an excellent introduction to General Relativity and Cosmology. It is designed to serve as a self-contained text for graduate and advanced undergraduate students and also to provide a basic text for PhD courses. Each of the four parts of the book, two basic and two advanced, can be used as an independent module. In the first part, the main concepts of General Relativity are presented, while the second offers an introduction to the astrophysical applications. The third part is advanced, and discusses the extensions of General Relativity; the contents represent ideal material for a short course at PhD level. The final part of the book provides an introduction to Relativistic Cosmology and its applications. Throughout the text, all mathematical calculations are explained clearly, in step by step detail. Whenever appropriate, the reader is guided to further specialized sources of information.