Download Free A Seismic Retrofit Design Methodology For Reinforced Concrete Bridge Columns Using Fiber Composites Book in PDF and EPUB Free Download. You can read online A Seismic Retrofit Design Methodology For Reinforced Concrete Bridge Columns Using Fiber Composites and write the review.

Performance of bridges during previous earthquakes has demonstrated that many structural failures could be attributed to seismic deficiencies in bridge columns. Lack of transverse reinforcement and inadequate splicing of longitudinal reinforcement in potential plastic hinge regions of columns constitute primary reasons for their poor performance. A number of column retrofit techniques have been developed and tested in the past. These techniques include steel jacketing, reinforced concrete jacketing and use of transverse prestressing (RetroBelt) for concrete confinement, shear strengthening and splice clamping. A new retrofit technique, involving fibre reinforced polymer (FRP) jacketing has emerged as a convenient and structurally sound alternative with improved durability. The new technique, although received acceptance in the construction industry, needs to be fully developed as a viable seismic retrofit methodology, supported by reliable design and construction procedures. The successful application of externally applied FRP jackets to existing columns, coupled with deteriorating bridge infrastructure, raised the possibility of using FRP reinforcement for new construction. Stay-in-place formwork, in the form of FRP tubes are being researched for its feasibility. The FRP stay-in-place tubes offer ease in construction, convenient formwork, and when left in place, the protection of concrete against environmental effects, including the protection of steel reinforcement against corrosion, while also serving as column transverse reinforcement. Combined experimental and analytical research was conducted in the current project to i) improve the performance of FRP column jacketing for existing bridge columns, and ii) to develop FRP stay-in-place formwork for new bridge columns. The experimental phase consisted of design, construction and testing of 7 full-scale reinforced concrete bridge columns under simulated seismic loading. The columns represented both existing seismically deficient bridge columns, and new columns in stay-in-place formwork. The existing columns were deficient in either shear, or flexure, where the flexural deficiencies stemmed from lack of concrete confinement and/or use of inadequately spliced longitudinal reinforcement. The test parameters included cross-sectional shape (circular or square), reinforcement splicing, column shear span for flexure and shear-dominant behaviour, FRP jacket thickness, as well as use of FRP tubes as stay-in-place formwork, with or without internally embedded FRP crossties. The columns were subjected to a constant axial compression and incrementally increasing inelastic deformation reversals. The results, presented and discussed in this thesis, indicate that the FRP retrofit methodology provides significant confinement to circular and square columns, improving column ductility substantially. The FRP jack also improved diagonal tension capacity of columns, changing brittle shear-dominant column behavior to ductile flexure dominant response. The jackets, when the transverse strains are controlled, are able to improve performance of inadequately spliced circular columns, while remain somewhat ineffective in improving the performance of spliced square columns. FRP stay-in-place formwork provides excellent ductility to circular and square columns in new concrete columns, offering tremendous potential for use in practice. The analytical phase of the project demonstrates that the current analytical techniques for column analysis can be used for columns with external FRP reinforcement, provided that appropriate material models are used for confined concrete, FRP composites and reinforcement steel. Plastic analysis for flexure, starting with sectional moment-curvature analysis and continuing into member analysis incorporating the formation of plastic hinging, provide excellent predictions of inelastic force-deformation envelopes of recorded hysteretic behaviour. A displacement based design procedure adapted to FRP jacketed columns, as well as columns in FRP stay-in-place formwork provide a reliable design procedure for both retrofitting existing columns and designing new FRP reinforced concrete columns.
"This CD-ROM consists of eight papers that were presented by ACI Committee 440 at the Spring Convention in Atlanta, GA, in April 2007"--Site Web de l'éditeur
fib Bulletin 35 is the first bulletin to publish documentation from an fib short course. These courses are held worldwide and cover advanced knowledge of structural concrete in general, or specific topics. They are organized by fib and given by internationally recognized experts in fib, often supplemented with local experts active in fib. They are based on the knowledge and expertise from fib's ten Commissions and nearly fifty Task Groups. fib Bulletin 35 presents the course materials developed for the short course "Retrofitting of Concrete Structures through Externally Bonded FRP, with emphasis on Seismic Applications", given in Ankara and Istanbul in June 2005. The course drew on expertise both from outside Turkey and from the large pool of local experts on this subject. In most countries of the world, the building stock is ageing and needs continuous maintenance or repair. Moreover, the majority of existing constructions are deficient in the light of current knowledge and design codes. The problem of structural deficiency of existing constructions is especially acute in seismic regions, as, even there, seismic design of structures is relatively recent. The direct and indirect costs of demolition and reconstruction of structurally deficient constructions are often prohibitive; furthermore they entail a substantial waste of natural resources and energy. Therefore, structural retrofitting is becoming increasingly widespread throughout the world. Externally bonded Fibre Reinforced Polymers (FRPs) are rapidly becoming the technique of choice for structural retrofitting. They are cleaner and easier to apply than conventional retrofitting techniques, reduce disruption to the occupancy and operation of the facility, do not generate debris or waste, and reduce health and accident hazards at the construction site as well as noise and air pollution in the surroundings. fib Bulletin 35 gives state-of-the-art coverage of retrofitting through FRPs and presents relevant provisions from three recent standardisation milestones: EN 1998-3:2005 "Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings", the 2005 Draft of the Turkish seismic design code, and the Italian regulatory document CNR-DT 200/04, "Instructions for Design, Execution and Control of Strengthening Interventions by Means of Fibre-Reinforced Composites" (2004).
To ensure better performance for a range of existing reinforced concrete structures in seismic regions with substandard structural details, seismic retrofit is an economical solution. Hence, this chapter presents some of the available results in which fiber-reinforced polymer (FRP) composites can be used for damage-controllable structures. For example, the performance of existing reinforced concrete structures whose components are vulnerable to shear failure, flexural-compression failure, joint reinforcement bond failure, or longitudinal reinforcement lap splice failure and retrofitted with FRPs is described. Novel concepts of modern constructions with controllability and recoverability using FRP composites are addressed.