Download Free A Search For Sterile Neutrinos At The Minos Experiment Book in PDF and EPUB Free Download. You can read online A Search For Sterile Neutrinos At The Minos Experiment and write the review.

This thesis highlights data from MINOS, a long-baseline accelerator neutrino experiment, and details one of the most sensitive searches for the sterile neutrino ever made. Further, it presents a new analysis paradigm to enable this measurement and a comprehensive study of the myriad systematic uncertainties involved in a search for a few-percent effect, while also rigorously investigating the statistical interpretation of the findings in the context of a sterile neutrino model. Among the scientific community, this analysis was quickly recognized as a foundational measurement in light of which all previous evidence for the sterile neutrino must now be (re)interpreted. The existence of sterile neutrinos has long been one of the key questions in the field. Not only are they a central component in many theories of new physics, but a number of past experiments have yielded results consistent with their existence. Nonetheless, they remain controversial: the interpretation of the data showing evidence for these sterile neutrinos is hotly debated.
A self-contained guide to the role played by neutrinos in the Universe and how their properties influence cosmological and astrophysical observations.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examines supersymmetry, extended gauge groups, and grand unification. Thoroughly covering gauge field theories, symmetries, and topics beyond the standard model, this text equips readers with the tools to understand the structure and phenomenological consequences of the standard model, to construct extensions, and to perform calculations at tree level. It establishes the necessary background for readers to carry out more advanced research in particle physics. Supplementary materials are provided on the author’s website and a solutions manual is available for qualifying instructors.
The scientific program of these important proceedings was arranged to cover most of the field of neutrino physics. In light of the rapid growth of interest stimulated by new interesting results from the field, more than half of the papers presented here are related to the neutrino mass and oscillations, including atmospheric and solar neutrino studies. Neutrino mass and oscillations could imply the existence of a mass scale many orders of magnitudes higher than presented in current physics and will probably guide scientists beyond the standard model of particle physics.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
For many years neutrino was considered a massless particle. The theory of a two-componentneutrino,whichplayedacrucialroleinthecreationofthetheoryof theweakinteraction,isbasedontheassumptionthattheneutrinomassisequalto zero. We now know that neutrinos have nonzero, small masses. In numerous exp- iments with solar, atmospheric, reactor and accelerator neutrinos a new p- nomenon, neutrino oscillations, was observed. Neutrino oscillations (periodic transitionsbetweendifferent?avorneutrinos? ,? ,? )arepossibleonlyifneutrino e ? ? mass-squareddifferencesaredifferentfromzeroandsmalland?avorneutrinosare “mixed”. The discovery of neutrino oscillations opened a new era in neutrino physics: an era of investigation of neutrino masses, mixing, magnetic moments and other neutrino properties. After the establishment of the Standard Model of the el- troweak interaction at the end of the seventies, the discovery of neutrino masses was the most important discovery in particle physics. Small neutrino masses cannot be explained by the standard Higgs mechanism of mass generation. For their explanation a new mechanism is needed. Thus, small neutrino masses is the ?rst signature in particle physics of a new beyond the Standard Model physics. It took many years of heroic efforts by many physicists to discover n- trino oscillations. After the ?rst period of investigation of neutrino oscillations, manychallengingproblemsremainedunsolved.Oneofthemostimportantisthe problem of the nature of neutrinos with de?nite masses. Are they Dirac n- trinos possessing a conserved lepton number which distinguish neutrinos and antineutrinos or Majorana neutrinos with identical neutrinos and antineutrinos? Many experiments of the next generation and new neutrino facilities are now under preparation and investigation. There is no doubt that exciting results are ahead.
"This volume offers a valuable insight into various aspects of the ongoing work directed at measuring neutrino mass. It took twenty years to refute the assertions of Bethe and Peierls that neutrinos were not observable, but it has since been realised that much can be learnt from these particles. The moral is, as Fiorini argues here, that the study of neutrinos was and remains demanding but rewarding. Subjects addressed in this volume include: clarifying the meaning of the Klapdor-Kleingrothaus results, probing the Majorana nature of neutrinos, observing lepton number violating effects for the first time, studying the end point of the spectrum in the search for neutrino masses and speculating whether it is possible to measure neutrino masses in cosmology. Lectures are enriched with rich historical overviews and valuable introductory material. Attention is also given to theoretical topics such as the evolution of the concept of mass in particle physics, a status report on neutrino oscillations and current discussion on neutrino masses. The reader is further reminded that neutrino masses may also have some bearing on the very origin of the matter among us, and have many deep links with other important lines of current physics research." --Book Jacket.