Download Free A Search For Muon Neutrino To Electron Neutrino Oscillations In The Minos Experiment Book in PDF and EPUB Free Download. You can read online A Search For Muon Neutrino To Electron Neutrino Oscillations In The Minos Experiment and write the review.

The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations (θ13), currently the “holy grail” of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel “library event matching” (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS’ (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS’ final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa’s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
This thesis highlights data from MINOS, a long-baseline accelerator neutrino experiment, and details one of the most sensitive searches for the sterile neutrino ever made. Further, it presents a new analysis paradigm to enable this measurement and a comprehensive study of the myriad systematic uncertainties involved in a search for a few-percent effect, while also rigorously investigating the statistical interpretation of the findings in the context of a sterile neutrino model. Among the scientific community, this analysis was quickly recognized as a foundational measurement in light of which all previous evidence for the sterile neutrino must now be (re)interpreted. The existence of sterile neutrinos has long been one of the key questions in the field. Not only are they a central component in many theories of new physics, but a number of past experiments have yielded results consistent with their existence. Nonetheless, they remain controversial: the interpretation of the data showing evidence for these sterile neutrinos is hotly debated.
Our Universe is made of a dozen fundamental building blocks. Among these, neutrinos are the most mysterious - but they are the second most abundant particles in the Universe. This book provides detailed discussions of how to describe neutrinos, their basic properties, and the roles they play in nature.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Contents:Solar Neutrinos:The Latest Solar Neutrino Results in Super-Kamiokande (Y Koshio)Weak Current in Deuterium (T Sato)Solar Neutrino Phenomenology and Future:Solar Neutrino Oscillations (M C Gonzalez-Garcia)The Status of Resonant Spin Flavor Precession (C S Lim)Atmospheric Neutrinos:Status of the Atmospheric Neutrino Studies (M D Messier)Cosmic Ray Measurements for Atmospheric Neutrino with BESS-TeV (K Abe)Oscillation Phenomenology I:Calculations of the Atmospheric ν Fluxes (P Lipari)Three-Flavor Analysis of Atmospheric and Solar Neutrinos (A Marrone)Absolute Neutrino Mass:Neutrinoless Double Beta Decay and Neutrino Oscillations (H V Klapdor-Kleingrothaus)Accelerator Neutrinos, CPV:The MINOS Experiment (M D Messier)The JHF-Kamioka Neutrino Project (T Kajita)Models and GUTs:Proton Decay in the Semi-Simple Unification Model (T Watari)Leptogenesis via LHu Flat Direction (M Fujii)Lepton Flavor Violation:Probing Physics Beyond the Standard Model from Lepton Sector (J Hisano)Oscillation Phenomenology II:Four Puzzles of Neutrino Mixing (S M Barr)Supernova Neutrinos:Supernova Neutrinos (J F Beacom)and other papers Readership: Researchers in high energy physics. Keywords:Solar Neutrinos;Atmospheric Neutrinos;Oscillation Phenomenology;Neutrino Mass;Accelerator Neutrinos;CP Violation;GUTs;Lepton Flavor Violation;Supernova Neutrinos
​This thesis represents the first double differential measurement of quasi-elastic anti-neutrino scattering in the few GeV range--a region of substantial theoretical and experimental interest as it is the kinematic region where studies of charge-parity (CP) violation in the neutrino sector most require precise understanding of the differences between anti-neutrino and neutrino scatter. This dissertation also presents total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which is then compared to measurements from previous experiments. Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure CP violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. The measurement described herewith determines the nuclear and instrumental effects that must be understood to undertake precision neutrino physics. As well as being useful to help reduce oscillation experiments' uncertainty, this data can also be used to study the prevalence of various correlation and final-state interaction effects within the nucleus. In addition to being a substantial scientific advance, this thesis also serves as an outstanding introduction to the field of experimental neutrino physics for future students.
This authoritative text provides a lively, thought-provoking and informative summary of neutrino astrophysics. Neutrino astronomy is being revolutionized by the availability of new observational facilities. Theoretical work in astrophysics and in particle physics in increasing rapidly. The subject of solar neutrinos has many seemingly independent aspects, both in its theoretical basis (involving nuclear, atomic, and particle physics, geochemistry, and astronomy). For many physicists, solar neutrinos constitute the low-energy frontier of high-energy physics. Results from all these disciplines are combined here, providing a timely and unified discussion of the field. Each chapter begins with a succinct overview of material to be presented and ends with an annotated bibliography. For advanced undergraduate students, but will be essential reading for all researchers interested in the physics of neutrinos and what they reveal about the nature of the Universe.
This intriguing and accessible book examines the experiments on neutrino oscillations. It argues that this history gives us good reason to believe in the existence of neutrinos, a particle that interacts so weakly with matter that its interaction length is measured in light years of lead. Yet, the scientific process has provided evidence of the elusive neutrino. Written in a style accessible to any reader with a college education in physics, Are There Really Neutrinos? is of interest to students and researchers alike. This second edition contains a new epilogue highlighting the new developments in neutrino physics over the past 20 years.